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SUMMARY

Understanding and quantifying the behaviour of river floods at extreme discharges has important
applications in design of civil structures such as river dikes. For design purposes, one is often interes-
ted in return periods that are substantially larger than the observation period. These estimates are
often obtained using classical statistical methods. In this paper, a method based on Bayesian statistics
is presented. This approach enables us to use all available sources of information, and to take statisti-
cal uncertainties into account as well.

Seven predictive probability distributions are considered for determining extreme quantiles of loads:
the exponential, Rayleigh, normal, lognormal, gamma, Weibull and Gumbel. The presented method
has been successfully applied to estimate extreme quantiles of discharges and their return periods.
Prior information based on historical floods is represented in terms of censored data and is then used
to determine informative prior distributions of the statistical parameters. This prior information can be
updated with actual data to determine the posterior information, and provides a rational basis for
extrapolation. As an example, a Bayesian analysis of annual maximum discharges of the river Rhine
at Lobith is performed to assess extreme quantiles such as the design discharge.

Keywords: Bayesian analysis, informative prior distribution, non-informative prior distribution, posterior
distribution, flood data.

1 INTRODUCTION

Understanding and quantifying the behaviour of river floods at extreme discharges has important
applications in design of civil structures such as river dikes. For design purposes, one is often
interested in extreme events with larger return periods than the observation period. Extreme dis-
charges with very large return periods can be estimated by fitting various probability distributions to
the available observations. See for example DH and EAC-RAND (1993) and Castillo (1988). Proba-
bility plots and goodness-of-fit tests, such as chi-square and Kolmogorov-Smirnov are commonly used
to select an appropriate distribution.

A major practical difficulty in fitting probability distributions is that there is often a limited amount of
observations for determining extreme quantiles and particularly extreme discharges. The associated
return period is large compared with the length of the observation period. In the Netherlands, observed
flood discharges are available for a period of 98 years only. Consequently, there is a large statistical
uncertainty involved in estimating discharges with large return periods when using these observations.
The maximum likelihood method has been recognized as one of the best parameter estimation
methods (Castillo, 1988; Galambos et al., 1994); but it is especially suitable when there is a large
number of observations. Furthermore, the method has the disadvantage that statistical uncertainties
cannot be taken into consideration.

One consequence of sparse data is that different probability distributions seem to fit the observations
and therefore only a few can be rejected. The different distributions involved usually lead to different
extrapolated values and the goodness-of-fit tests for selecting an appropriate distribution are often
inconclusive. The tests are more appropriate for the central part of the distribution than for the tail.
Recently, van Gelder (1999) presented an alternative based on a Bayesian approach for estimating ext-
reme quantiles while statistical uncertainties are taken into account. Statistical uncertainty mainly occurs
due to a lack of observations. This uncertainty can be subdivided into parameter uncertainty and distrib-
ution-type uncertainty. Bayesian estimates and so-called Bayes weights can then be used to account for
parameter uncertainty and distribution-type uncertainty, respectively. Using Bayes weights, it is possible
to discriminate between different probability distributions and to quantify how well a distribution fits the
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observations. The Bayesian approach was successfully applied by van Noortwijk et al. (2001), Chbab et
al. (2000) and van Gelder et al. (1999) for estimating extreme river discharges. Different distributions
were investigated and therefore weights were determined corresponding to how well they fitted the
observed data. In determining Bayes weights, so-called non-informative Jeffreys priors were used. The
main disadvantage of non-informative priors is that they are often improper. Although this disadvantage
can be overcome, the Bayesian approach is especially useful for combining different sources of informa-
tion and for using informative priors.

This paper again addresses the Bayesian approach for estimating extreme river discharges. It differs
from the results in van Noortwijk et al. (2001) and Chbab et al. (2000) in the sense that informative
priors based on historical censored observations are used instead of non-informative priors. In Section
2 we briefly define statistical uncertainties. Bayes estimates of parameters and quantiles associated
with large return periods are examined in Section 3. Non-informative Jeffreys priors, as well as
informative priors based on historical censored observations are presented in Section 4. Bayes factors
and Bayes weights will be treated in Section 5. In Section 6 we examine the river Rhine as a case
study, and we end with conclusions in Section 7.

2 STATISTICAL UNCERTAINTIES

According to (amongst others) Slijkhuis et al. (1999) and Siu and Kelly (1998), uncertainties in risk
analysis can primarily divided into two categories: inherent uncertainty and epistemic uncertainties; see
Figure 2-1. Inherent uncertainties represent randomness or variability in nature. For example, even in the
event of sufficient data, one cannot predict the maximum discharge that will occur next year. The two
main types of inherent uncertainty are inherent uncertainty in time and inherent uncertainty in space. It is
not possible to eliminate inherent uncertainty completely. Epistemic uncertainties represent the lack of
knowledge about a (physical) system. The two main types of epistemic uncertainty are statistical
uncertainty (due to lack of sufficient data) and model uncertainty (due to lack of understanding the
physics). Statistical uncertainty can be parameter uncertainty (when the parameters of the distribution
are unknown) and distribution-type uncertainty (when the type of distribution is unknown). In principle,
epistemic uncertainties can be reduced as knowledge increases and more data becomes available.

‘ Uncertainty ‘
\
[ |
Inherent uncertainty } I Epistemic uncertainty |
I [
] [
Inherent uncertainty in time | ‘ Inherent uncertainty in spacel | Statistical uncertainty ‘ | Model uncertainty
I
[
| Parameter uncertainty | |Di5tribution type uncertainty‘

Figure 2-1: Types of uncertainty.

3 BAYESIAN ESTIMATION

The only statistical theory that combines modelling inherent uncertainty and statistical uncertainty is
Bayesian statistics. The theorem of Bayes (1763) provides a solution to how to learn from data. In the
framework of estimating the parameters 8 = (8,,...,6, ) of a given probability distribution, Bayes' theo-
rem can be written as:

_ I(x|8)x(6) :I(X|9)7t(9)
M (61 x) jf(x|e)n(e)d9 m(x)

with

I(x|86) the likelihood function of the observations x ={x,,....,x,) when the

parametric vector 8 =(6,,...,8,) is given,

n(8) = the prior density of & =(6,,...,8,) before observing data x =(x.,.....x, ).
n{6|x) = the posterior density of 8 =(6,,...,6,) after observing data x =(x,,....,x, ),
m(x) = the marginal density of the observations x ={x,,....,x, ).
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The likelihood function /(x |@) represents the inherent uncertainty of a random variable X when 6
is given, whereas the prior density z(@) and the posterior density 7(@ | x) represent the statistical
uncertainty in @ . This statistical uncertainty in @ is parameter uncertainty. Using Bayes’ theorem, we
can update the prior distribution to the posterior distribution as soon as new observations become
available. When more observations become available, the parameter uncertainty gets smaller. If a
random variable X has a probability density function /(x |@) dependent on the parametric vector @
then the likelihood function /(x,....,x, |8 ) of the independent observations x = (X;,....,x,) is given by:

@ I(x16) =1(x,....%, 18)=] T tx, |6)

The marginal density 7(x) is obtained by integrating the likelihood /(x [6) over @ . Note that the
maximum-likelihood estimate of the parameter vector @ is defined as the estimate 6, which maxi-
mizes the likelihood function /(x |8) as a function of 6 .

The cumulative distribution function and the survival function of the random variable X are denoted
by F(x|€) and F(x|8)=1-F(x|@), respectively. The posterior predictive probability of exceeding
a certain x,, is given by:

(3) PriX >x, | x}=[Pr{X >x, |6}%(8|x) d8 = [F(x,|6)x(6lx) d6

Besides representing parameter uncertainty on the basis of Bayesian statistics, distribution-type
uncertainty can also be taken into account using so-called Bayes factors or Bayes weights. This will
be treated in Section 5.

4 PRIOR CHOICE

To obtain Bayes estimates, a prior distribution of the parameters of the assumed likelihood function
and some observations (sample information) are required. The prior distribution and the sample infor-
mation contained in the likelihood function are then combined using Bayes’ theorem to determine the
posterior distribution of the parameters. The key question is how to choose the prior distribution.

4.1 Non-informative priors

The Bayesian approach is especially useful for combining prior subjective information with actual
observations. Prior information can be represented in terms of a prior distribution, which can be either
non-informative or informative. There might be situations in which we would like the observations to
‘speak for themselves’, especially in comparison to the prior information. This means that the prior
distribution should describe a certain ‘lack of knowledge’ or, in other words, should be as ‘vague’ as
possible. For this purpose, so-called non-informative priors have been developed. An advantage of
using non-informative priors is that it provides us with a methodology to perform statistical inference in
situations where ‘little is known a priori’.

According to (amongst others) Box and Tiao (1973), Kass and Wasserman (1996) and van Noortwijk
et al., (2002), the best and most widely used method for determining non-informative priors is that of
Jeffreys (1961). This method chooses the non-informative prior to be proportional to the square roct of
the expected Fisher information measure. In mathematical terms, the non-informative Jeffreys prior is
given by:

(4) J(0)e<[1(8)]"

where I(8) is the expected Fisher information for a single observation of the probability distribution
involved:; that is:
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(5) 1(60) = —Eyg (;’?fog f(xw)]

The non-informative Jeffreys priors can be easily extended to the multivariate case. The Jeffreys prior
is then taken proportional to the square root of the determinant of the expected Fisher information
matrix for a single observation (Box and Tiao, 1973; van Noortwijk et al., 2002). An excellent overview
on the selection of non-informative priors is presented by Kass et al. (1996). The main advantage of
the Jeffreys prior is that it is always both invariant under transformations and dimensionless.

A disadvantage of most non-informative priors is that they can be improper; that is, they often do not
integrate to one. This disadvantage can be resolved by focussing on the posterior distributions rather
than on the prior distributiocns. As a matter of fact, formally carrying out the calculations of Bayes’
theorem by combining an improper prior with observations often results in a proper posterior.

4.2 Informative priors

The Jeffreys priors considered in the previous section are useful in situations in which we would like
the observations to ‘speak for themselves'. This means that a non-informative prior distribution should
describe a certain ‘lack of knowledge’. On the other hand, an informative prior distribution is one that
reflects ‘subjective’ knowledge concerning the unknown statistical parameters.

For estimating extreme flood quantiles, a useful informative prior is a distribution based on historical
floods, which occurred before the period of systematic gauging. For the river Rhine this could be the
period 1800-1900. Although the real historical discharges are generally unknown and the river geo-
metry has changed, reference books on storm surges and river floods form a valuable source of
additional information. These books mention, for example, whether there was flood damage or even a
catastrophe occurred involving drowned people, dike bursts, flooded polders, dislodged houses and
collapsed bridges. Their main sources of information are old newspapers, chronicles, letters, diaries,
memories, legends, government or business records, and even folk songs (Chen et al., 1975). In
addition to these written records, man made high water marks and memorials, as well as geomor-
phologic and botanical evidence of large and catastrophic floods can be used. As opposed to the
systematic gauging records, these floods are generally referred in the hydrological literature as
‘historical floods’ (see, e.g., Stedinger and Cohn (1986) and Hirsch and Stedinger (1987}). The main
aim is to approximately assess the number and magnitudes of the largest pregauge historical floods,
which occurred within a period, which is generally larger than the systematic record.

Let the random quantity X be defined as the annual maximum river discharge and let us consider a
time period of r years. We propose to quantify historical information as foliows: if historical references
do not mention any flood damage then X <y, . If historical references mention flood damage but no

catastrophe, then y, < X <y, . If historical references mention a catastrophe then y, < X'.

On the basis of expert judgement, the number of years falling in each of the above three categories
denoted by r,, i =1,2,3, must be assessed.

The subjective estimates of the proportions of historical flood per discharge category can be regarded
as censored observations. An observation x can be censored on the left, doubly censored and cen-
sored on the right, when x<y,, y,<x<y,and y, < x respectively. For more details and examples
of data censoring, see Kaczmarek (1977).

When considering historical observations, the censoring is due to the absence of systematic mea-
surements, changes in river and meteorology, as well as unreliable reports of historical floods. Under
the assumption of the historical censored observations being independent, the likelihood function can
be formulated as:

I(rryrs 10)=[P{X <y, |8} [Py, < X<y, [0} [Pr{y, < X |0}* =

&
© =[F(y,18)I"[F(y, 18)-F(y, |8)]*[1-F(y,|8)]

Given the likelihood function of the historical censored observations /(r,,r,,r; |8)and a non-informa-
tive Jeffreys prior 7(@), Bayes’ theorem (1) can be used to obtain the posterior density (8 |r,,r,.13).

This posterior can then be considered as the informative prior in a subsequent Bayesian analysis for
combining historical information with recent systematic uncensored and reliable observations
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X =(x,..Xx,). The final result is the posterior density of & when both historical censored and
systematic uncensored and reliable observations are given: thatis, (6 | r,,r,,r,, x) .
In the absence of doubly censored historical observations, likelihood function (6) reduces to:

(7) I(r,r, |8)=[F(y, |6)]"[1-F(y,|8)]"

According to Stedinger and Cohn (1986), Cohn and Stedinger (1987) and Hirsch and Stedinger
(1987), a record of historical flood peaks is generally of this form. To apply Eq. (7), we should be able
to define a time period of r years, where r=r, +r,, and a threshold level y, such that over that

period floods greater than y, left a record which is still available today. Kaczmarek (1998) used Eq.

(7) in a maximum-likelihood analysis to fit a gamma distribution to historical and systematic annual
maximum discharges of the Polish river Warta.

When censored observations are used as an informative prior distribution, an important point is how
much information is contained in the sample of censored observations. In a Bayesian analysis, the
posterior density is formed as a combination of prior information on the one hand and actual
observations on the other hand. The more information is contained in the historical censored
observations, the more weight they get in comparison with the systematic uncensored cbservations.

5 BAYES FACTORS AND BAYES WEIGHTS

The Bayesian approach to hypothesis testing originates from the work of Jeffreys (1961). He
developed a methodology for quantifying the evidence in favour of a scientific theory using the so-
called Bayes factors. This factor is the posterior odds of the null hypothesis when the prior probability
on the null is one-half. A recent overview on Bayes factors can be found in Kass and Raftery (1995).

Assume the data x =(x,,...,x,) to have arisen under one of the m models H,, k=1,...m. These

hypotheses represent m marginal probability densities z(x |H, ), with prior probabilites p(H,),
k=1,..,m,where ¥7,,p(H;)=1 and ¥7,p(H, | x)=1. These posterior probabilities can be obtained
using Bayes’ theorem as follows:

(8) o(H, 1x)= X HJB(H) g

Y m(x |H;)p(H,)

(x| H,
jk:—( | ’), Lk=1,..m
w(x|H,)

is denoted by the Bayes factor. The marginal densities of the data under H,, n(x|H,), can be

obtained by integrating with respect to the probability distribution of the uncertain parametric vector
0, =(6,......6, ) with number of parameters d :

(10) n(x |Hy) = [I(x |8,,H,) n(6, | H,) db,

where 7(6, |H, ) is the prior density of 8, under H, and /(x|8,,H,) is the likelihood function of the
data x given 8, and H, .

A difficulty in using non-informative improper priors for calculating Bayes factors is that the prior odds,
and thus the Bayes factors, may be undefined. The reason for this is that strictly speaking, the prior
probability p(H, ) is defined as:

(11) p(H.)=w(H,)[ J(8, |H,) d8,
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where the integral over the non-informative Jeffreys prior J(@, | H,) is often infinite and w(H, }is the

prior weight. However, according to Dawid (1999), this problem can be resolved by redefining the
posterior odds as:

- p(H, %) _n(x|H) wiH) . _
p(H | x) =(x|H,) w(H,)

These posterior odds are well defined so long as both integrals in it converge, which will typically be
the case so long as the sample size nis large enough. For the seven probability distributions
considered in this paper, the marginal densities of the data do indeed converge (Chbab et al., 2000).
Using Eqgs. (8) and (12), the posterior probability of model H, being correct can now be rewritten as:

(13) ol ) P HWH) oy

> m(x | H,)w(H,;)

It remains to choose the prior weights w(H, } . For formal model comparison, we propose to use equal
prior weights. Using the Bayes weights p(H, | x), k =1,...,m, the weighted predictive probability of
exceeding x, is defined by:

(14) P({X>XO|Hk,X}:Zp(Hk|X)Pt’{X>X0|Hk,X}
k=1 .

where Pr{X > x, |H,.x} is the predictive probability of 'exceeding X, under likelihood model H,,
k=1,..m.

6 CASE STUDY: THE RIVER RHINE AT LOBITH

Bayesian analysis has been applied to the annual maximum discharges of the river Rhine at Laobith
during the period 1901-1998. These observations have been corrected for non-homogeneities as
changes in river geometry and suchlike. A non-informative Jeffreys prior as well as an informative prior
based on historical censored observations in the period 1800-1900 was used. Statistical analysis of the
seven distributions based on the non-informative Jeffreys priors can be found in Chbab et al. (2000) and
van Noortwijk et al. (2001). In the former paper an approximate Jeffreys prior for the gamma distribution
was used, whereas in the latter paper the exact Jeffreys prior was used. The Bayes weights correspon-
ding to these seven distributions were determined. It was found that the Bayes weights depend largely
on the location parameter. For proper model selection we then proposed to use the same location
parameter for all seven distributions. On the basis of a statistical analysis the location parameter was
chosen to be equal to 2,125 m®/s for all the seven probability distributions. This location parameter was
derived by maximising the weighted marginal density of the observations, where Bayes weights have
been attached to the seven individual probability distributions, see Table 6-1. The Rayleigh and Weibull
distribution appeared to fit best with Bayes weights of 57% and 32%, respectively. The Bayes estimate
of the disscharge with an average return period of 1,250 years (the standard in the Netherlands) was
15,860 m/s.

Table 6-1:  Prior and posterior Bayes weights (van Noortwijk et al., 2001).

Bayes Exponential Rayleigh Normal lognormal Gamma Weibull Gumbel
Weights

Prior 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
Posterior  0.0000 0.5718 0.0481 0.0000 0.0072 0.3173 0.0555

New Bayesian calculations have been made using an informative prior for the parameters of the seven
distributions stated above, whereas the location parameter was still chosen to be equal to 2,125 m*/s.
The informative prior is based on historical censored observations in the period 1800-1900. Two
methods concerning data censoring, presented in subsection 4.2, have been used. They are indicated
as Method 1 and Method 2, respectively. More information about censored observations that was
used to define an informative prior is summarised in Table 6-2. The obtained Bayes weights of the
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seven probability distributions can be found in Table 6-3. Again the Rayleigh and Weibull distributions
appear to fit best when an informative prior has been used. The corresponding Bayes weights are
69% and 19% by Method 1 and 67% and 21% by Method 2, respectively. The Gumbel distribution
makes a score of circa 10% by both methods. The Bayes estimates of the discharge with an average
return period of 1,250 years are 15,290 m%/s by method 1 and 15,224 m¥/s by method 2, respectively.
The difference is comparatively speaking, small.

Table 6-2:  Subjective estimates of the number of historical floods of the Rhine River spread over two
or three discharge categories.
Period r r b Iy ¥, Im%s] |y, [m%s]
Method 1 | 1800-1900 | 100 75 20 5 7,000 10,000
Method 2 | 1800-1900 | 100 75 25 - 7,000 .
Table 6-3:  Prior and posterior Bayes weights with informative prior based on censored observations.
(Posterior 1 and Posterior 2 correspond with Method 1 and Method 2, respectively).
Bayes Exponential Rayleigh Normal lognormal  Gamma Weibull ~ Gumbel
Weights
Prior 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429
Posterior 1 0.0000 0.6929 0.0040 0.0000 0.0148 0.1870  0.1012
Posterior 2 0.0000 0.6688 0.0089 0.0000 0.0144 0.2143  0.0937

Figures 6-1 and 6-2 show both the empirical exceedance probabilities, based on complete and cen-
sored observations, and the predictive exceedance probabilities. In these figures asterisks indicate the
censored observations.

0 Bayesian analysis for seven distributions
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Figure 6-1: Predictive exceedance probability of annual maximum river Rhine discharge using censo-
red observations by Method 1.
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Figure 6-2: Predictive exceedance probability of annual maximum river Rhine discharge using censo-
red observations by Method 2.

7 CONCLUSIONS

A method, based on Bayesian approach, for estimating extreme values of river discharges is presen-
ted in this paper. The method deals with inherent uncertainties as well as statistical uncertainties.
Bayesian parameter estimates and Bayes weights can be used to account for parameter uncertainty
and distribution type uncertainty, respectively. Using Bayes weights, it is possible to discriminate bet-
ween different probability distributions and to quantify how well a distribution fits the data. For formal
distribution comparison, either non-informative or informative priors can be used. Furthermore, the
present paper explores the use of informative priors, which are determined using historical censored
floods. These floods occurred before the period of systematic gauging.

A Bayesian analysis is carried out on the river Rhine to determine the discharge at station Lobith with
an average return period of 1,250 years. From the analysis with both historical floods from the period
1800-1900 and reliable and homogeneous observations from the period 1901-1998, we conclude that
a Bayesian approach seems to be very promising. However, we remark that the use of informative
priors based on historical floods, instead of non-informative priors results in a lower discharge with a
return period of 1,250 years. It is not known yet whether this is due to unreliable information about
historical floods, which are generally not homogeneous, or to an actual lower occurrence rate of these
floods. Furthermore, it must yet be investigated what perception thresholds can best be chosen in
order to classify historical floods.
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APPENDIX

This appendix contains the probability distributions, which are considered in the statistical analysis of
the annual maximum discharges, as well as their non-informative Jeffreys priors.

Distribution Probability density function Jeffreys prior
Exponential 1 —X 1
P I EQXP{?}%. i(x), 6>0 J(Q):E

¥ 2
Rayleigh %exp{ X } o) (X), 80 J(@):%

I 1
Norma ( Texp{—u(x m) } (X)), r>0 J(m,r)=E
Lognormal J _ 1

exp —(Iog(x} P el txd,  rsl (m,f)f@
e ( T “exp{-bx}1, ,(x), ab=>0 J(a,b)= Vaw;a)q
a—1 a
Weibull alx X T
—|=| exps—|—| I x), a,b>0 Jab___
M p{ ] } () (a,b) wg
Gumbel 1 X-a ][x—a} ™
—expq— expy—expi——rr, b>0 Jla,b)=——
Lowp|- 22| p{ ol % } > (a,b)= o=

Remark with respect to the Jeffreys prior of the gamma distribution: The trigamma function y'(a) is
the first derivative of the digamma function:

dy(a) _ d%logT(a)
da da’

v'(a)=

for a>0, where I'(a)= L:O t*"'e"'dt is the gamma function for a>0.
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FLOOD FREQUENCY ANALYSIS DOWNSTREAM CONFLUENCES.
COMPARISON BETWEEN BIVARIATE DENSITIES AND EXPERIMENTAL DATAS

Sandrine LE CLERC, Michel LANG

Cemagref, Hydrology-Hydraulics Research Unit, 3 bis quai Chauveau, 69336 Lyon cedex 09
Leclerc@lyon.cemagref.fr, lang@lyon.cemagref.fr

SUMMARY

Various methods have been used to estimate design flood at ungauged sites, usually in two steps:
delineation of homogeneous regions, and use of regional standardised flood frequency curves. When
the main river and its tributary exhibit significant differences in flood regime, the assumption of homo-
geneity is doubtful. Then, an alternative is to combine the probability to have a flood on each branch of
the confluence. The dependence between flows in tributaries should be taken into account in the joint
probability structure. Some bivariate densities for solving joint probability problems are reviewed :
bivariate normal, bivariate Gumbel, Farlie, Hashino... Some of them are tested on experimental sites
where data is available on the three branches of the confluence. Then, the theoretical downstream
flood distributions, issued from the two upstream flood distributions and different bivariate densities,
are compared with the experimental flood distribution. The measure of dependency between flows in
tributary is computed, using both concomitant and non concomitant events. The simple correlation
coefficient between peak values of concomitant events does not exhibit the total dependency between
two river regimes. It is then important to deal with cases when only one river is flooded. We use a
correlation coefficient proposed by Bernier and Lencioni (1978), which has been applied on peak-over-
threshold data. It allows to analyse the process of both concomitant and non concomitant events.
Finally, attention should be paid to the variation of the dependency with the flood intensity. A dis-
cussion will provide some guidelines on it.

Keywords: Bivariate density, joint probability, correlation coefficient, confluence, concomitance, frequency

1 INTRODUCTION

The hydraulic analysis of flood consequences is based on the use of hydrological reference scenarios.
The estimation of a design flood hydrograph consists on associating the value of one or more flood
parameters to its probability of occurrence. One method to estimate all the characteristics of floods at
ungauged site is done by the delineation of homogeneous regions, and the use of standardised flood
frequency curves. But, if we want to know more precisely the contribution of a tributary catchment on
the regime of the main river, we can not accept this assumption of homogeneity if the two flood regi-
mes are too much different. So in this paper, we want to know if it is possible to compose the distri-
bution of flood frequency downstream a confluence only with the use of the upstream floods distribu-
tions. This composition could be done by the integration of a joint probability structure. Further biva-
riate densities for solving joint probability are reviewed here (part 1).

The dependence between flows in tributaries should be taken into account in the joint probability struc-
ture. So it is also necessary to estimate the dependence (part 2) between flows in the tributaries, and
to take it into account in the joint probability structure.

In the last part of this paper, several models of bivariate densities are verified using observed flood
datas from the confluence of the Loire and the Allier rivers. A comparison of those models with the
usual ones will be carried out. Finally, attention should be paid to the variation of the dependency with
the flood intensity.

2 BIVARIATE DENSITIES

Among the various ideal models of composition of probability laws, we can distinguish the simplified
models, the bivariate distributions models using the marginal distributions and those explicitly using
the correlation between two variables. The simplified model consists in reasoning on the two extreme
cases: independence or total dependence between both variables. These two hypothetical cases,
even if they are seldom presented in practice, give the advantage of providing the range of variation in
which the general case of two more or less dependent variables is. The models using the marginal
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laws deduce the density from probability of the couple of two variables of a function of each density of
the variables. Finally, there are also models revealing explicitly the coefficient of correlation between
the two variables.

Let X1, X2 denote the discharge of two tributaries and X = X1 + X2 the downstream discharge. The
general formulation of the bivariate distribution (Finch et Groblicki, 1984) can be expressed by:

F(x) = Prob[ X < x]= [[ £ (x,,x,) dx, dx,
(1)
with:

(2) f(xi>x2):f1(x|) fz(-xz) {l+p [Fl(xl);Fz(xz)]}

where f; and f2 denote the marginal densities of Xy and X, and p is a correlation function linking the
two distributions.

2.1 Simple models

Hawkes and Hague (1994) suggest it is better to test extreme cases before using sophisticated biva-
riate distributions. It is a way to consider the independent and dependent cases for downstream de-
sign flood hydrograph to determine the maximum range of uncertainty in downstream design flood
hydrograph with any given upstream design flood hydrograph.

The two trivial cases, i.e.,

» complete dependence between the flood regimes of the two tributaries (p = 1):

3 X(T) = XAT) + XAT)

e strict independence (p = 0):

(4) Flx,x) = fi(x) f(x,)

These extreme cases give respectively the higher and lower boundaries of the distribution of two
partially correlated variates. If the difference between the two extreme cases is not significant, equa-

tion (3) provides a good estimate of the downstream flood distribution because it gives the most unfa-
vourable case to be taken for the flood prevention.

2.2 Bivariate models derived from marginals

A wide range of bivariate distributions derived from the marginals has been proposed by many authors
for solving hydrological problems. Singh and Singh (1991) proposed the Farlie density, which has the fol-
lowing correlation function (see equation 2) which is a 0-marginal function (Finch and Groblicki, 1984):
(5) p (wv) =[(n+Du" =1)[(m+ 1™ 1]

where n, m > 0. The Farlie density is expressed by:

(6) FGx) = Fix)- £ 0) - {1+ - Fr o) = 1] [om+ - B (x)] -1

where c is a constant to be chosen in the interval:

(7) et e

nm max(n,m)
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The well-known Farlie-Gumbel-Morgenstern (FGM) density is a special case of Farlie density, with n =
m = 1. Long and Krzysztofowicz (1992) have derived the value of the correlation coefficient:

(8) R, = Cov(X,,Xy) = [[[x, = E(x)] [x, - EG)] £ (5103, dix, di,y

for various marginals f1 and f2. The FGM and Farlie densities can model only weakly correlated
variables, because the correlation coefficient Rq 2 is respectively in the range 1/3,1/2.

The bivariate models using the correlation coefficient are more flexible and allow any positive corre-
lation in [0; 1].

2.3 Bivariate models using the correlation coefficient

The bivariate standardised normal density of probability has the following expression:

(9) n*(x,,x,)=

x12 _2p|2x1x2 +x22:{

1
e
an [ 2(1*.0122)

It requires transformation for modelling non-Gaussian marginals. Kelly and Krzysztofowicz (1997) pro-
posed the meta-Gaussian distribution:

(10) F(x,,%,) = Prob(X, < x,, X, < x,) = N [®7 (F (1)), 07 (F, (x,)]

N *is related to the bivariate standardised normal distribution (pdF: n*(x1,x»))

o) "[Fi(x)] is the normal quantile transformation, where ¢ " denotes the inverse of the standard normal
distribution.

Hashino et al. (1993) suggested the following bivariate density:

(11) Fxx)= fla)f, (xz)(CO +Cx, +Cyx, +C“xlx2)

The coefficients C; are expressed according to the average and the standard deviation of the variables
X1 and X2. Finaly, we get the following density :

(12) .f‘(xl,xz):fl(xl)fz(xz){l_i_pm o ) )CZE();Z)}

a, o,

Mousavi (1997), had tested the abilities of bivariates models using the correlation coefficient to solve
river confluence joint probability problems. The Hashino distribution has been compared with FGM
and Farlie distributions, which are limited to weak dependencies. The Hashino model offered the ad-
vantage of accepting any marginal and type of dependence.

3 CORRELATION COEFFICIENT

Several statistics have been proposed to measure the association between two variables (Farlie,
1960). The Pearson correlation coefficient is recommended for linear stochastic relations. The non-
parametric Spearman or Kendall rank correlation coefficients are more general. When dealing with
confluence problems, the Pearson correlation coefficient is taken to be a good measure of the depen-
dence between the flood regimes of the two tributaries. Those classical correlation coefficients are
only relative to concomitant values, with an event recorded on the two stations. This approach intro-
duces a bias into estimations. Bernier and Lencioni (1978) proposed analysing the processes of both
concomitant and non-concomitant events. Their method consists to estimate the correlation coefficient
such as the likelihood function of the given sample is maximum

Let Z;, Z> denote the peak-over threshold (POT) values on two stations, with cumulative distribution
functions Fy and Fz. Standardised Normal variables V; and V: are related to the original variates Z;
and Z; through the normal quantile transform, v, = ¢ '1[5(2,)], and define an event when V;> S, ( 5
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represents the threshold of each sample chosen for the variables Vj). Let us consider three kinds of
events downstream of the confluence (figure 3-1):

o (V,)setof V)S, with V, < S, is the sample in which there is only an event on the first tributary

o (V,) set of V,)S, with V|, <, is the sample in which there is only an event on the second
tributary

o (V,,V.,): set of concomitant (V,,V,) events, V,)S and V,)S,, the discharges are over their

]

respective threshold on each station. _
The case with V, <S§, and V, <§, have to be eliminated because only the flood events are

considered.
Discharge -
Concomitant events %\
v, >S5, M E
< \Vl > S]

v, > 8,
S V]<5| f‘\\

P

station 1 \

/ \ \ time

/ | Non-concomitant events

v, > S

|J

station 2

time
Figure 3-1: Concomitant and non-concomitant events (from Bernier and Lencioni, 1978).

e Likelihood function of (V},): set of V,)S, with V, < S,
The probability of a flood V;; at the first tributary and no flood at the second one is given by:

S,

(13) Prob(V, =V,,.V, <5,) = [n*(V,,.3)dy

n*is the Normal bivariate density given by equation (7)
Using the following equation:

(14) Vi -2p,V,y+3°=(y—p,V)’ +V;12(1*10122)

and combining equations (9) and (13) gives:

s, 2
Prob(V, =V,,,V, <S,)=—__L ___ exp(-V?/2) J‘exp{—%(""u"g] }d}-
21— Puz ~ {l=pi®
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517l
Ji

—P"
(15) =L exn(-Vii2)  [exp(Yutni-pdu
2r 1_10132 o

By integrating equation (15) with the variable u = (y — p,,V,,) /(y1- p,,” ), We obtain:

(16) Prob(V; =¥, V. <8, )= xp(=Vii /2) ¢(%)

=Ry 4~

1
——e
2T
The likelihood function of the first set of value is:

1 Si=Ry sV
'17 = . 2 2Ry 2V
(17) L TEH[BXP( VAR )b( \W ]

e Likelihood function of (V,): set of V), with V, <,

1 1,22
(19) e I Ry
e Likelihood function of (V;;, V.,)

(20) L= H n (Vi-ll Vi)

The correlation coefficient psz is chosen such that J (InL)=0,WithL=L; L, L5

P,
As the correlation coefficient belongs to the range [0 ;1], we prefer to compute the total likelihood L(p;2
= //1000), for i= 0 to 1000, and select the value ps» which gives the maximum likelihood.

& APPLICATION

4.1 Description of the study basin

D] I ~ 3 ot ~
A A S > (R g7 \ e
G:‘/;_‘_\_ S \{:j;.}, i ,—H\(/ ol
2 N J
By
el h

Figure 4-1: Study Basin: Loire — Allier confluence.

The Loire basin at Givry downstream the confluence has an area of 32610 km®. The sub-basins cover
an area of 17600 km® for the Loire at Nevers and 14400 km® for the Allier at Veurdre. These basins
are subject to Mediterranean climatic influences which causes strong rains on the Cevennes regions,
and also to phenomena of oceanic origin caracterised by big durations of raining.The discharges time-
series cover the period from the year 1982 to the year 1996.
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4.2 Study of flood regime

The flood regime study consists of the estimation of the discharges quantiles for different return
periods in order to determine the discharges frequency distribution. The time step of the study was
fixed to 4 days (according to the gradex study done by Menez and Bontron (1997)). The selected tech-
nigue of sampling is the POT (Peak Over Threshold) technique. It consists on a selection of all the
floods over a fixed threshold according to the stationarity, homogeneity and independence assump-
tions of events and Poisson law (Lang & al., 1999).

4.2.1 Distribution fitted with the discharge observation (T<20 years)

Exponential laws are fitted on the three discharges time-series. They have the following expression:

_l—x) 1

(21) G (X)Zl'“e a :lfju_Tx:p

x,(T)=xy+aln(uT,)

with 1 the mean number of events per year (here, |L =2)
Law parameters and their first moments are given in the table 1, according to the results of Maniguet
(1998).

4.2.2 Distribution extrapolated with the rainfall information

Extrapolation for events of rare frequency was carried out by the methods of the gradex (Guillot &
Duband,1967) and the aesthetic gradex (Michel, 1982; CFBG,1994) which respectively following
equations (22) and (23). The gradex method represents a simplified rainfall-runoff model which pro-
vides estimates of flood magnitudes of given probabilities. It is based on the hypotheses that beyond a
given rainfall threshold (known as the pivot point), all water is transformed into runoff, and that a
rainfall event of a given duration generates runoff for the same length of time. The aesthetic gradex is
a generalisation of the gradex method. The main parts of the model are the fitting of rainfall and dis-
charge distribution. The use of a simple mathematical formulation allows a progressive extrapolation
of the discharge distribution.

(22) VCXd(T)= VCXd(Tg) +a, In (T/Tg)

(23) VCXd(T)= VCXd(Tq) +ap In[(ag/ap)(T/Tg —1)+1)

The extrapolation begins at the return period 20 years, with Tg corresponding to the pivot point (Tg=20
years). To estimate the extrapolated quantiles, one needs the quantile of the pivot point and the gra-
dex value agin order to insert rain information

4.2.3 Parameters and graphical distributions

Table 4-1: parameters of distribution.

GIVRY NEVERS VEURDRE
POSITION: Xo 1053 585.1 334.4
SCALE: a, 382.2 381.1 243.4
MEAN: E(X;) 1538.7 966.2 577.8
ST. DEVIATION: o 609.1 381.1 2434
Rainfall gradex:  a, 1132 m/s 615 m/s 495m°/s

We get the graphical distributions on figure 4-3.
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Figure 4-3: Theoretical distribution laws.

4.3 Estimation of correlation coefficient between floods

The correlation coefficient ps2 .is given by the estimation of the maximum likelihood method. The figure

3 presents the evolution of the likelihood function (14) and the function o (nL)=0 in the interval [0,1].
P,

The evaluation of the correlation coefficient depends on the duration fixed to define concomitance bet-

ween events. Several durations were tested to determine the best coefficient (Table 4-2).

Table 4-2: Evaluation of the correlation coefficient according to the duration.

Duration 1 2 3 4 5 6 10
P2 0.36 0.52 0.52 0.52 0.52 0.52 0.52
RPearson 061 0.58 057 0,57 0.57 0.57 0.59

20 - — - P - T R i - s

Maximum of the likelihoed function

L o
likelihood function s \
-

.
= 112
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- 3 =114
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Figure 4-4: Evaluation of the correlation coefficient.
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The correlation of both concomitant and non concomitant floods is stable as from two days. The Pearson
correlation is higher and less stable. For this study, the correlation of both concomitant and non conco-
mitant floods is p12=0.52.The Pearson correlation is also estimated, the value is Rpearson = 0.67

4.4 Composition of flood regimes of Loire and Allier

Using the adjustment parameters of the upstream rivers and the correlation coefficient, the down-
stream regime can be calculated thanks to the Hashino density. Furthermore, we can compare those
results with the results obtained for the gradex and the aesthetic gradex extrapolation. The results are
reported on figure 4-5.

We can notice that the Hashino model gives a good estimation of the flood regimes until the return
period of 1000 years. From 70 to 1000 years of return period, the Hashino model is between the
gradex and aesthetic gradex curves. This model doesn’t seem to be sensitive to the rainfall informa-
tion. The gradex method is very close to the independent distribution until 20 years of return period
and develops then towards the full dependent distribution as from the return pericd of 70 years. The
aesthetic gradex is close to the independent case longer, until the return period of 70 years. After that,
it is situated between the extreme cases.

8000 -
discharge (m3/s)
gradex extrapolation
7000 === Sl
»” dependentcase
A ”
¢ :
6000 +——
. aesthetic gradex
5000 ——
independent case
4000 +
3000
2000 +—
Hashino modsl
1000
return period (year)
0 T T T f
0.1 1 10 100 1000

Figure 4-5: Composition of flood regime.

The differences between the composition model and usual extrapolations can be explained with the
non stationarity of the correlation coefficient at high return periods. We put in decreasing order all the
flood events of each branch of the confluence and notice the ones which are concomitant. We can
notice on the following figure 4-6, that the strongest events are concomitant.
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Figure 4-6: Link between discharge and concomitance

So it seems possible that the correlation coefficient is not the same for all the return periods. Using
this feeling, we try to compose the downstream regime for several correlation coefficients from [0 to 1]
(figure 4-7).

8000

w discharges (m3/s)

7000 ) dependent case
rd
x
’
¢ p=0.9
/! &
6000 -— L : pgﬁf
! ! | p=0.4
’ d 2 i Pﬁgbsz
# o ’
5000 + ‘ o p=0d
/ Z 5 / *
a i » independent case
<
L g L4 o
4000 5 - 7

3000 +
|
2000 -
1000 ‘
! return period (year)
0+ o — . ‘ i
04 1 10 100 1000

Figure 4-7: Composition of bivariate densities for several correlations.
According to the composed distributions with several correlation coefficients on figure 6, the Hashino

model does not seem to be well adapted to high correlation coefficients because it does not gather the
distribution of total dependence.
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5 CONCLUSION

The control of the dependence between flows is possible only if a very large number of data is
obtained. A way to avoid this lack of data is to simulate a continuous flow on a basin in order make the
frequential analysis on a long continuous discharge time-serie. These approaches are used to
increase the chronicles of flow available. Furthermore, in that case, that will allow to control the degree
of connection better between the flows of both tributaries and to analyse more precisely the perfor-
mances of each model of composition. In that case, the use of a stochastic model with a correlated
rainfall generator and a rainfall-runoff model should be interesting in order to make classes of floods
according to their magnitude and compose flood regimes using bivariate models of highest performan-
ces according to the correlation.
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SHIFTS IN FLOOD FREQUENCY DUE TO CLIMATE VARIABILITY

Alistair McKerchar
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SUMMARY

Almost invariably, frequency analysis methods presume that the expected frequency of hydrological
extremes (floods, drought) is unchanged from year to year: in statistical terms the series are said to be
stationary. With increasing lengths of archived records and better knowledge of broadscale long-term
coupled oceanic-atmosphere oscillations, better scrutiny of the stationarity assumption is possible.

The longest flood records available in New Zealand show that in the northeast of the country, the period
from 1947-1977 was “flood rich”, whereas the period since 1978 has been “flood poor”. Opposite beha-
viour occurred in the south and west of the country: compared with the period 1947-1977, more floods
have occurred since 1978. Substantial changes in design flood quantiles occur when data from the two
periods are compared.

The shifts in flood frequency are also evident in relevant rainfall series. In the south and west, increa-
ses in mean rainfall of up to 15% have occurred. While the rainfalls are affected to a limited extent by
the state of the El Nifio Southern Oscillation (ENSQO) phenomenon, the mechanism driving the shifts
appears to be a change in the relative frequency of El Nifio and La Nifia episodes since 1978. This
change of frequency of the ENSO phenomenon is attributed to a change in the state of the Interde-
cadal Pacific Oscillation, a broadscale feature that affects much of the Pacific Ocean.

Keywords: Flood frequency, stationarity, climate shift, EI Nifio Southern Oscillation, Interdecadal Paci-
fic Oscillation, New Zealand

1 INTRODUCTION

Design flood estimates underpin large capital investments in bridges, flood protection works, and dam
spillways as well as providing the basis for flood-plain hazard zoning.

Typically, design flood estimates are determined from frequency analysis of flood records collected
over the last few decades. The most common method is to apply frequency analysis to the series of
peak flows for each year of record — the so-called annual maximum method. The method assumes
that the expected frequency of flooding is unchanged from year to year: in statistical terms the series
is said to be stationary.

Recent climatological studies (Salinger and Mullan, 1999) have demonstrated that the assumption of
stationarity may not be valid for annual rainfall in New Zealand. Compared with the period 1851-1975,
consistent decreases of up to 8% were shown for the period 1976-1994 in the north and east of the
North Island, and increases of more than 8% were shown in the west and south of the South Island.
These shifts in rainfall were attributed to shifts in the phase of a decadal scale oscillation in broad
regions of the Pacific Ocean, the so-called Interdecadal Pacific Oscillation (IPO), described by Mantua et
al., (1997) as a “...coherent, interdecadal time scale ocean-atmosphere covariability”. Mantua et al.
(1997) use the leading eigen vector of North Pacific sea surface temperatures as an index for the state of
the IPO. The oscillation shifted phase in 1947, in 1977, and is thought to have shifted again in 1999
(Salinger, pers. com.). Although the index is defined from North Pacific sea surface temperature series,
the oscillation affects temperatures across the whole of the Pacific Ocean, including the southwest
where New Zealand is located.

The shifts in the IPO coincide with altered frequencies of occurrence of El Nifio and La Nifia phases of
the El Nifio Southern Oscillation (ENSO) phenomenon: more El Nifio episodes and fewer La Nifia
episodes have occurred since 1978. In New Zealand El Nifio episodes tend to give more rain in the
south and west of the country and drier conditions in the northeast; La Nifia episodes tend to give less
rain in the south and west, and more rain in the northeast.

Because streamflow is the residue of rainfall after losses to evaporation, transpiration and groundwater,
changes in flows can be much larger than changes in rainfall. For example, if annual rainfall increases by
10% from 1000 mm to 1100 mm, and losses to evaporation, transpiration and groundwater remain
constant at 700 mm, the corresponding annual runoff is expected to change from 300 mm to 400 mm, a
33 % increasel!
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As more storms accompany an increased annual rainfall, increased storm intensity and more severe
floods might be expected. Conversely, where annual rainfall is reduced, reductions in storm rainfall
intensity and flood magnitude are possible.

This study assembles a set of long streamflow records to examine whether systematic shifts in flood
magnitudes have occurred. Annual maxima are extracted and parametric and non-parametric statis-
tical tests are applied to identify regions of the country where shifts appear to have occurred. The
apparent shifts are also evident in representative rainfall series.

2 METHODS
2.1 Details of data and catchments

Streamflow data were sought for rivers where continuous records were available for at least 40 years.
In practice this target was not always achieved, but 32 records were assembled with lengths between
33 and 53 years. As the study was confined to investigating the differences between flood records for
1947-1977 and 1978-1999, data for before 1947 for some of the stations, notably from the Manawatu
River in the North Island and several South Island lakes, were not used.

The peak flows are estimated by applying stage-discharge rating curves to measured water levels. Peak
discharges are prone to error because frequently the rating curves must be extrapolated beyond the
range of calibration gaugings. Standard procedures developed for this process (Mosley and McKerchar,
1993) ensure that extrapolation is undertaken systematically. In most cases it is anticipated that the
standard error of measurement of individual flood peaks will not exceed 10 — 20 percent. An exception
discussed later applies for a river where there is substantial uncertainty about the magnitude of the
largest flood in the record.

Peak inflows for six South Island lakes are included. These inflow series are unaffected by hydroelectric
operations. As it is not possible to measure lake inflows directly, the inflows are calculated from records
of lake levels and outflows. The calculations use the differences in lake levels at successive time steps to
estimate change in lake volume. Average inflow over a time interval (e.g. 6 h) is given by the average
outflow plus the rate of change of lake volume. Because wind, barometric pressure gradients and
seiching affect lake levels, the estimates of lake volume changes, and the resulting inflows over short
intervals, are prone to error. In this study, the error is reduced substantially by using peak inflow avera-
ged over 72 hours (3 days). In contrast, the peak flows for rivers are the maxima of measurements made
typically at 15 minute intervals. Inflows for the lakes were not available after 1994.

The drainage areas for the records used are shown in Figure 2-1. The site numbers in this figure are a
key to the details of the records in Table 2-1.

Very large variations of rainfall occur across New Zealand, especially in the South Island. This island,
which extends from latitudes 40° to 46° south is in the Southern Hemisphere zone of persistent
westerly wind. It is divided by the Southern Alps, a northeast-southwest oriented chain of mountains
more than 600 km long and typically 1500-2500 m high. These Alps intercept moist maritime westerly
wind. Heavy precipitation, in places exceeding 10 000 mm/year, occurs where these air flows ascend
the western slopes of the Alps (Henderson and Thompson, 1999). In contrast, in the eastern rain-sha-
dow areas, annual rainfalls of less than 400 mm occur. Consequently, the rainfall distribution in river
basins is very uneven and difficult to quantify. The headwaters of the east and southeast draining
rivers receive most of the precipitation that is recorded at the streamgauges: for example, at station
68526 (Rakaia River) in Figure 2-1, 80 percent of the runoff is received as rainfall within 20 km of the
northwest boundary. Thus the flows of the larger rivers draining to the east coast of the South Island
reflect a response to rainfall near the main divide of the Southern Alps.

2.2 Graphical presentation

The data for before and after 1978 are presented are pairs of boxplots in Figure 2-2 for six North
Island records, and in Figure 2-3 for six South Island records. These plots provide summaries of the
annual maxima data. For each series, the plots present the minimum, the 75 percentile value (the
value that is exceeded in 75% of years), the 50 percentile (median), the 25 percentile, and the maxi-
mum. The interquartile range (IQR) is the range between the 25 and 75 percentile values.
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Figure 2-1: Maps of North and South Island showing locations of catchments used in the study.
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Details for each streamgauge are given in Table 2-1.
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Table 2-1:  Details of flood records used (Walter, 2000).
No. Station River Location Area  Systematic  Full years of Note
number (kmz) record starts record to 1999
1 1316 Awanui School Cut 222 1958 42
2 9213  Ohinemuri Karangahake 287 1956 43
3 15408 Rangitaiki Murupara 1184 1952 47
4 15410  Whirinaki Galatea 534 1952 47
5 15412 Rangitaiki Te Teko 2893 1952 47
6 15514 Whakatane Whakatane 1557 1952 47
7 16501 Motu Houpoto 1393 1957 42
8 15901 Waioeka Gorge Cableway 641 1958 40
9 21801 Mohaka Raupunga 2370 1957 42
10 23102 Ngaururoro Fernhill 1930 1952 47
11 1032560 Manawatu Teachers College 3900 1947 53 5
12 32503 Manawatu Weber Rd 713 1954 45
13 32526 Mangahao Ballance 266 1954 45
14 32531 Mangatainoka  Suspension Br. 404 1953 46
15 33301 Whanganui Paetawa 6643 1957 42 8
16 43602 Waitangi SHBr 17.6 1966 33
17 46618 Mangahakia Gorge 246 1960 39
18 57521 Wairoa Irvines 462 1957 42 7
19 60114 Wairau Dip Flat 505 1951 48
20 65104  Hurunui Mandamus 1060 1956 43
21 66401 Waimakariri Old Highway Br. 3120 1947 53
22 68526 Rakaia Fighting Hill 2560 1957 42 6
23 71132 Lake Tekapo Inflow 1420 1947 48 1,2
24 71168 Lake OChau Inflow 1190 1947 48 1,2
25 74308 Taieri Outram 4705 1968 43 3
26 75207 Clutha Balclutha 20582 1954 45
27 75277 Lake Wakatipu Inflow 3133 1947 48 1,2
28 75288 Lake Hawea Inflow 1384 1947 48 1,2
29 75292 Lake Wanaka  Inflow 2628 1947 48 1,2
30 78504 Waihopai Above Scour 157 1958 41 4
31 79704 Lake Te Anau  Inflow 3124 1947 48 1,2
32 93203 Buller Te Kuha 6350 1963 36
Notes 1 Data since 1995 not available.
2 72 h averages used.
3 Annual maxima since 1957
4 Early data from 78503, at Kennington.
5 Early data from 32502 Fitzherbert Br., & 32580 Ruahine St.
6 Early data from 68502, Gorge.
7 Early data from 57502, Gorge. ’
8 Recorded flows since 1972 increased by 45 m®/s to allow

for upstream abstractions by Tongariro Power Development

2.3 Tests applied
Statistical tests are used to test whether the pre-1978 data differed from the post-1978 data. The tests

used are the f test for differences between means, the variance ratio (F) test, and a range of non-
parametric tests.
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Figure 2-3: Box plots of data for six South Island catchments.

The f test and the F test are parametric tests that require that the mean of each set of data be
normally distributed, and this is assured by the central limit theorem for relatively small samples,
except for the most perverse data. The ttest used includes an adjustment for differing variances bet-
ween the two samples.

The t test is applicable to non-normal data, but it lacks power — that is, it is less likely to detect
differences which are truly present than the equivalent non-parametric test (Helsel and Hirsch, 1992).
One way to handle the non-normal data is to transform them. Experience has indicated that in many
cases the logarithmic transform is a reasonable normalising transform for NZ flood data. A second
problem with the ttest is that it assumes that the mean is a good measure of central tendency. This is
not the case with severely skewed data.

Non-parametric tests are another way to test for differences between non-normal data. Following the
recommendation of Robson et al. (2000), the Mann-Witney U test and the Kruskal-Wallis test are used
to test for a step change when the time of change is assumed known. The Mann-Witney (MW) test is a
non-parametric alternative to the ttest. It is the most powerful of the non-parametric alternatives to the
t test. The Kruskal-Wallis (KW) ANOVA test assesses the hypothesis that the different samples are
drawn from the same distribution or from distributions with the same median. The interpretation is
basically identical to that of the parametric ANOVA, except that it based on ranks rather than values.

3 RESULTS

Box plots display the annual maxima for samples of the North Island (Figure 2-2) and South Island
(Figure 2-3) records.

For the North Island, the boxplots for the three series in the upper row of Figure 2-2 show lower
guantile values, and with the exception of the Ohinemuri maximum, lower maxima and minima. These
catchments are located in the north and east of the North Island. The boxplots series in the lower row
are for catchments in the southern half of the North Island. They indicate no consistent pattern of
differences between the two periods.

For the South Island (Figure 2-3), the first two boxplots, for catchments in the northeast third of the
island, indicate little difference between the two periods. The remaining four boxplots indicate gene-
rally increased quantile values, and higher maxima and minima, most notably for those in the south
and southwest.

The ttest for log transformed data, the MW test and the KW tests all rejected, at the 5% level, the null
hypothesis of no significant difference for the South Island catchments indicated in Figure 3-1.
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Figure 3-1: South Island catchments (shaded diagonally) for which the Mann-Witney U test, the
Kruschel Wallis ANOVA and the two-sided f test for the log-transformed series were all
significant at the five percent level. Milford Sound and Invercargill are locations of two
raingauges referred to in the text.

4 DISCUSSION

The box plots convey an overall impression of each series and the changes, if any, of their distri-
butions before and after 1978.

The rivers that drain catchments in the northeast of the North Island (Figure 2-3) show some shifts. The
IQR for the post 1978 data is tighter than for the pre-1978 plot and the range of the data tends to be less.
This is most pronounced for station 156412 (Rangitaiki at Te Teko), but there is little change in the
median. The F tests for both natural and log-transformed data suggested that the differences between
the variances for the two periods for these series are significant. On the other hand, none of the non-
parametric tests indicated any reason to reject the null hypothesis of no difference between the two
periods. As longer streamflow records are sparse in the northern half of the North Island, the extent to
which the apparent shift extends over the north and northeast is not well defined by the river flow data.
The statistical tests flag the shifts in the south and southwest as being significant at the 5% level. The
shifts are most severe for 79704 (Lake Te Anau) and 78504 (Waihopai), the southern-most catchments.
Examination of relevant daily rainfall records supports the apparent shift in the hydrological regime.
For example, a rainfall record for Invercargill (see Figure 3-1 for location) is a good proxy indicator for
flows in the Waihopai River. The mean annual rainfall for 1947-1977 was 1046 mm, whereas the
mean annual rainfall for 1978-1999 was 1138 mm, a 92 mm (9 percent) increase. (This is consistent
with the increase in mean runoff for the Waihopai which is 126 mm, or 31 percent.) The number of
days per year with rainfalls exceeding various thresholds of extreme daily rainfalls for Invercargill for
two periods is illustrated in Figure 4-1. This shows that there were many more occurrences of extreme
daily rainfalls in the later period. For example, there was one day in the 31 year period 1947-1977
when the daily rainfall exceeded 50 mm, but ten days in the 1978-1999 period. (The largest flood in
the record 200 m%s, in January 1984, was due to a daily rainfall of 134 mm, more than twice the
maximum of the 1947-1977 daily rainfalls. In terms of insurance claims, this was the most damaging
flood that has occurred in New Zealand.)
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Figure 4-1: Occurrences of extreme daily rainfall at Invercargill, for 1947-1977, and 1978-1999.

The Milford Sound (see Figure 3-1 for location) rainfall is a good proxy indicator for inflows into Lake
Te Anau and other South Island lakes. The apparent increase in the mean annual Milford Sound rain-
fall is from 6060 to 6920 mm/yr, an increase of 860 mm/yr (14%). The number of days per year with
rainfalls exceeding various thresholds has also increased (Figure 4-2).
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Figure 4-2: Occurrences of extreme daily rainfall at Milford Sound for 1947-1977, and 1978-1999 (No
data Oct 70-Dec 71).

The consequences of the shifts for design flood estimates are illustrated in Figure 4-3, which presents the
frequency analysis of the pre-and post-1978 data for Waihopai and Te Anau using the Gumbel (Extreme
Value type 1) distribution fitted using the method of Probability Weighted Moments (McKerchar and
Pearson, 1990). The Waihopai 1 in 100 AEP estimate is almost doubled, from 64 to 119 m¥s: this is much
more than the 95% confidence limits for the estimates. The Te Anau increase is from 2780 to 3560 mals, a
28% increase. The 95% confidence limits for the Te Anau estimates overlap, but probably would not, if the
next five years of the Te Anau data (1995-1999), which include several notable floods, were available.
Finally, the result is consistent with the conclusions in Salinger and Mullan (1999) that rainfall in the
northeast of the North Island has decreased and rainfall in the west and south of the South Island has
increased since 1978 as a consequence of a shift in the IPO.
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annual maxima for 1947-1977 and 1978-1999. The lines are Gumbel (Extreme Value
type 1) distributions fitted using Probability Weighted Moments.
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5 CONCLUSIONS

Less severe floods have occurred since 1978 in the northeast of the North Island. The areal extent of
this shift has not been well defined.

More severe floods have occurred since 1978 in the southern two thirds of the South Island, and chan-
ges are most pronounced in the south and west of the South Island. Statistical tests indicate that the
increases are unlikely to be a chance occurrence.

The shifts in hydrological regime are consistent with changes observed in rainfalls and are attributed
to changes in the frequencies in ENSO extremes, due to a shift in the IPO in 1977/1978.

The increases are large enough to justify reassessing flood frequency in this region.

No significant consistent changes are evident elsewhere in the country.
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ESTIMATING FLOOD PROBABILITIES AT THE REGIONAL SCALE
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SUMMARY

This paper proposes a geostatistical approach to flood regionalisation which takes into account the
uncertainty of flood estimation due to a short sample size and uses regional information on the basis
of spatial distance. This method is compared to various extreme value statistical methods based on
product moments and L-moments and the Gradex method. The predictive performance of the different
methods is examined by a jackknifing approach for flood quantiles of different return periods which
allows a realistic assessment of the estimation error for ungauged catchments.

Keywords: Flood regionalisation, Geostatistics, Gradex

1 INTRODUCTION

The statistical estimation of flood quantiles for catchments with observed flood data is limited by two
uncertainties. The first uncertainty is due to a relatively short length of the observed flood data series
compared to the return period of interest (Gutknecht, 1994). The second uncertainty is due to the
choice of distribution function and parameter estimation method (Schreiber 1970; Hosking and Wallis,
1997). One possibility for reducing these uncertainties, in order to improve the estimation of floods
associated with large return periods, is the use of regional information from nearby catchments (e.g.
Kirnbauer, 1981). If 5 catchments with 30 years of observation each are pooled into a group, the
available sample size is extended to 150 years under the assumption of statistical independence and
regional homogeneity. In ungauged catchments where no observed flood data are available, regional
information can be used in a similar manner for estimating flood frequencies. In this case, an addi-
tional source of uncertainty comes in as a result of the regional transposition (Bldschl, 1999). Hydro-
logical similarity is a measure that is inversely related to the degree of uncertainty due to the regional
transposition of hydrological information. When hydrologically similar catchments are used for the
transposition, little uncertainty is introduced. There are two main types of methods for the regio-
nalisation of flood frequencies to gauged and ungauged catchments. The first type applies geogra-
phical distance as a similarity measure or uses geographically contiguous regions (Dalrymple 1960).
The second type uses catchment characteristics (or attributes) as, for example, in regressions of flood
data with catchment area, annual rainfall, and combinations thereof (e.g. Fill and Stedinger 1998),
which implies regions that are not necessarily geographically contiguous.

The aim of this study is to assess the predictive performance of various methods of regional flood fre-
quency estimation. What is clearly of utmost interest to any practitioner is the optimum choice of
methods and data as a function of purpose, hydrological conditions of the region under study, and
data constraints. As data availability is often a limiting factor in practical projects, we focus in this
paper on geostatistical methods using only the time series of flood data and the location of the catch-
ments. Additionally we examine the Gradex method which uses rainfall data as additional information.
The predictive performance of estimating flood quantiles in ungauged catchments by these methods is
assessed using a jackknifing approach.

2 DATA BASE

The analysis is based on (a) the series of the observed maximum annual flood peaks of Austrian catch-
ments with an area from 10 to 1000 km® and (b) the coordinates of the centroids of these catchments.

(a) In a first step, we screened the maximum annual flood peaks for data errors and removed all
anthropogenically affected stations from the data set (Piock-Ellena & Bldschl, 1998). This resulted in
flood series for 597 catchments with observation periods from 15 to 44 years, which were used in the
further analysis. To reduce the effects that differences in catchment area might have on the regional
patterns of flood frequency the specific flood discharges were standardised to represent specific
discharges of a hypothetical catchment area of 100 km® according to

315



[nternational Conference on Floed Estimation
March 6-8, 2002 / Berne, Switzerland

(1) gioo = ga- A% 1007

where Gino is the specific d|scharge for a 100 km® catchment and ga is the observed specific discharge
of a catchment of area A (km )

(b) The coordinates of the centroids for the 597 catchments were derived from digital catchment
boundaries. Two data sets were used. Most of the catchment boundaries were derived from a digital
database of catchment boundaries digitised from the Austrian 1:50000 scale map (OK 50) (Behr et al.,
1998). The remaining boundaries were derived from a digital elevation model (Rieger, 1992a,b; Rleger
1999). All catchment boundaries were checked manually using the OK 50.

3 ESTIMATION OF UNCERTAINTY AND GEOSTATISTICAL ANALYSIS

A first spatial analysis of mean annual flood discharges (1% moment) calculated from the flood data
revealed pronounced spatial patterns with high values in the western part and small values in the
eastern part of Austria. The patterns of the coefficient of variation (2" & moment) are more erratic, i.e.
there is a larger degree of randomness. The spatial variability of the skewness (3 moment) is mainly
erratic with essentially no coherent patterns. It is clear that this spatial variability is a result of two
sources, natural hydrological heterogeneity and random variability due to a relatively short period of
observation. The increasing scatter with the order of the moment is due to the increasing random
variability in calculating the flood moments for short periods of observation. To examine what is the
variability due to short observation pericds and what is hydrological variability in Austria we used
Monte Carlo simulations. Samples of different sizes were drawn randomly from a Gumbel (EV1) dist-
ribution (mean annual flood = 0.3 m /( *kmz) CV=0.5), which, on average, fits well the Austrian flood
data. The moments for each of the samples as well as the variance of the moments between the sam-
ples were calculated and have been plotted against sample size in Figure 3-1. As expected, the Monte
Carlo simulations give a decreasing variance with increasing sample size for all three moments. The
variance of the moments and thus the uncertainty due to a short observation period increases sig-
nificantly with the order of the moment as shown in Figure 3-1.
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Figure 3-1: Variability between sample moments calculated from Monte Carlo simulations.
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In the regionalisation (or spatial interpolation) step of the flood moments, the uncertainty due to short
observation periods should be removed, while the hydrological heterogeneity should be retained. In
the Ordinary Kriging approach (OK), the nugget of the variogram can be interpreted as the sum of the
uncertainty due to short observation periods and the hydrological heterogeneity of adjacent catch-
ments (de Marsily, 1986; Bloschl and Grayson, 2000). As ordinary kriging uses the same variogram
throughout the domain, it is not possible to account for differences in record length in different stations.
We are proposing here a method which does allow to account for differences in record length. To
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consider different uncertainties or errors at different measurement points the kriging equations were
modified. In the case where the errors & associated with each measurement Zi are non-systematic,
uncorrelated with each other and with Z and have a known variance o, the kriging system becomes
(de Marsily, 1986),

2 Ay = x,) = Ko + 1 =7(x - x,)

2. %=1

The function ¥(x, —x;) is the true variogram value of the magnitude Z (without errors) for the mea-
surement points x; and x;, ' are the weights of the kriging estimator. The estimate Zo is a weighted

sum of the available measurements Zi; Z, = E%Z{ . To remove the uncertainty due to short obser-
vation periods, we used the variance between the sample moments from the Monte Carlo simulations
(Figure 3-1) as the variance of the errors:

(3) oXmoment)=a*n"

where nis the number of recorded years in a catchment. Kriging with uncertain data (KUD) allows the
spatial interpolation of the flood moments where the sampling variance is taken into account.

To apply the two geostatistical methods (OK and KUD) for flood regionalisation, we performed a vario-
gram analysis of the flood moments. The lags of the variograms are based on the centroids of the
catchments. Next, an exponential variogram (de Marsily, 1986) was fitted to the observed variograms,
which gave a range of 60 km for the first three moments which was used in all interpolations. The nug-
get of the variogram was set to zero which implies no natural hydrological spatial variability in the
moments at very small scales.

The product moments (mean annual flood, CV, CS) were interpolated using ordinary kriging (OK) and
kriging with uncertain data (KUD). The error variance o/ for each station was taken as (3) which was
obtained from a best fit in Figure 3-1. The parameters a and b for traditional product moments (PM)
and L-Moments (LM) are shown in Table 3-1. For comparison, an additional scenario was examined
where L-moments (Hosking and Wallis, 1997, Stedinger et al., 1993) were calculated and spatially
interpolated. The Monte Carlo simulations were repeated for the L-moments.

Table 3-1:  Parameters for the error variance of as a result of a short record length.

Moment Mean—-PM |CV-PM |CS-PM Mean-LM |CV-LM CS-LM
a 1.3 1.18 10.47 0.03 0.01 0.005
b -1 -0.96 -1 -10.3 <1.4 -1.1

As the L-moments put more weight on samples that are near the median than on extreme values, the
variances between samples are smaller than the variances between samples based on product
moments. Extreme values have a relatively minor effect on the calculated L-moments and thus the
estimation of the moments is more robust, particularly for short observation periods. However, L-
moments are based on the assumption that the observed values near the median have more predic-
tive power for extreme situations than observed extreme values.
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4 DERIVED FLOOD FREQUENCY APPROACH

To examine the value of additional information (i.e. rainfall data) a variant of the Gradex method was
applied (Guillot, 1972; Duband et al., 1994). At the heart of the method is the assumption that the ave-
rage maximum storage capacity of the catchment is reached at a return period Tgs. The storage capa-
city is the difference between catchment rainfall and flood runoff. From this assumption follows that for
rainfall events greater than the storage capacity the catchment can be assumed to be completely
saturated and additional rainfall produces a corresponding increase in runoff, i.e.

@) Omy — Ompy = (N7 — N7, O). A

where Omyis the average flood runoff over the time interval H with a return period T>Tg and Qi is

the corresponding runoff with a return period Tg (i.e. where saturation occurs). NTGEb and NR,GEb

are catchment rainfall for return periods T and Tg, respectively. Both rainfalls are associated with a
duration H. A is catchment area. The assumption (4) is a statistically weak point of the method,
because rainfall of a given probability does not necessarily cause a runoff of the same probability
(Bloschl and Sivapalan, 1997; see also Figure 3-2 in Vol. 4 of Institute of Hydrology, 1999). The flood
peak (s is then calculated by

5) QOs; =r-0Omy and
QSTg = anrﬂ

The r-value in Eq. 5 is the ratio of the flood peak to the mean runoff over a time interval H and is a
measure of both the runoff dynamics of the catchment and the temporal distribution of rainfall. Flashy
catchment response and spiky temporal rainfall patterns are both associated with large r-values.
When plotted in a graph, these assumptions imply that beyond the return period 7g the flood proba-
bility function Qr is parallel to the transformed extreme rainfall probability function Qn. The extreme
rainfall N is transformed into the units of runoff [m3¥s] by

(6) ON=N-A-ARF-r

where ARF is the areal reduction factor for rainfall. Flood probabilities with a return period T < T are

obtained from a frequency analysis of the observed floods while floods with 7' >7 . are obtained from

a parallel line to the transformed extreme rainfall probability function.

To apply the Gradex method in Austria, annual maximum daily precipitation for 922 stations was used
as rainfall input and the curve | of Hershfield (1968) was used as the areal reduction factor to calculate
catchment rainfall. To determine extreme rainfall in a catchment, the statistical moments of the series
of the annual maximum daily precipitation (mean and standard deviation) were estimated and spatially
interpolated by the kriging method. By overlaying the spatial interpolation of the moments and the
digital catchment boundaries, the moments of the areal rainfall were derived. The probability of rainfall
was assumed to be Gumbel distributed. The r-values were calculated from the assumption that the
time of concentration is only a function of catchment area, and the following relationship was used
(Merz et al. 1999):

@) fe= 9. A033

where 1. is the time of concentration (hrs) and A is catchment area (km®). For a better comparison of
catchments of different size, discharges were standardised to a catchment size of 100 km® by

ARF (100km?) - r(100km?)

(8) Qred = 08— RF (&) r(A)
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where Q. is the flood discharge for a catchment size of 100 km? and Q(A) is the flood discharge for a
catchment size of A. For return periods T < Tg = 10 years, flood probabilities were calculated from the
flood moments based on a Gumbel distribution, while for probabilities T > Tg the flood probabilities
were calculated from rainfall by the Gradex method.

5 INTERCOMPARISON AND PREDICTIVE PERFORMANCE

The predictive performance of the three methods has been assessed in this intercomparison by a
jackknifing approach. It is important to note that this approach only examines the error due to the re-
gionalisation to ungauged catchments. Other error sources such as the extrapolation to large return
periods are not considered in this approach. However, the regionalisation error is usually significantly
larger than other error sources as long as the return period is not much larger than the observation
period. In the jackknifing approach we assumed that no flood data are available for a particular gau-
ged catchment. We then estimated the T-year flood from neighbouring catchments only. Next we com-
pared the regional estimate so obtained with the estimate derived from local extreme value analysis
using the flood data and a GEV distribution. We repeated this procedure for every catchment in turn.
This allowed us to obtain a regional estimate for each gauged catchment from which an error estimate
could be derived for each catchment.

For a visual appreciation of the spatial patterns as produced by the various regionalisation methods,
we have interpolated the spatial Jackknifing estimates (i.e. estimates with only regional information) to
obtain spatial flood frequency patterns of the study area. Figure 5-1 shows the local estimates using
local flood data (left) and the Jackknifing estimates (without using local flood data) (left) in terms of the
specific 100 year floods (m3s/km?) standardised to a catchment area of 100 km? .

GEYV distribution

0 0.6 1.2 1.8 24

0 0.6 1.2 1.8 2.4

Figure 5-1: Specific floods (mB/s/kmz) standardised to a catchment area of 100 km? for a return pe-
riod of 100 years. Geostatistical (top: GEV product moments, centre: GEV - L-Moments)
and derived flood frequency (Gradex) (bottom) local estimates (left) and regionalisation
results using Jackknifing (without using local flood data) (right).
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The patterns of the specific 100 year floods estimated by the GEV distribution with product moments
and L-Moments are similar with high values at the northern part of the central Alps and low values in
the lowlands of eastern Austria. The patterns of the regional estimation (left) using jackknifing are
smoother than the patterns of the local estimation. This is because the spatial heterogeneity of
adjacent catchments due to short observation periods has been removed.

The patterns of the Gradex derived flood frequencies (bottom) are a combination of the rainfall and
discharge patterns. Due to the assumption of saturation for high return periods the Gradex values are
significantly higher than the results of the geostatistical approaches.

To compare the predictive performance of the different approaches we performed a detailed error
analysis. Specifically, we examined bias and random error of the regional estimates. The bias nme
was defined as the normalised mean error:

1 A 1
(9) nme = ——2 (g0 qmo)/—qua
no, n o,

where gioo is the observed T-year flood discharge g1 is the regionally estimated T-year flood

A

discharge and nis the number of catchments. Note that qiooand g ico are specific discharges standar-

dised to a nominal catchment area of 100 km® according to equation (1) in order to give equal weights
to small and large catchments. The subscript 100 relates to the nominal catchments area. The random
error nsdve was defined as the normalised standard deviation of the error;

2
1 " 1 » 1
(10) nsdve = Z|:(q100—qmo)— Z(qmn"qw()) /—qua
no, noy n ,

Figure 5-2 shows biases and random errors plotted versus the return period. As would be expected,
the random errors tend to increase with the return period. However, this increase is relatively mode-
rate. For example, the geostatistical regionalisation (Ordinary Kriging, GEV (GEV-OK) gives a random
error of nsdve=0.40 for a return period of T=2.3 years (i.e. the mean annual flood) and nsdve=0.41 for
a return period of T=100 years. This is an increase of only 3%. This means that by far the largest error
source in flood regionalisation is the regional transposition of the mean annual flood and the extra-
polation to larger return periods introduces relatively little error. From a practical perspective it will
therefore be essential to also use flood data from stations with very short record lengths (e.g. 5 years).
Although floods with large return periods cannot be derived from these stations, the estimation of
mean annual floods is possible with relatively little uncertainty, which can improve the regional esti-
mation of flood frequencies tremendously. This finding is consistent with the suggestions in the UK-
flood estimation handbook of estimating the index flood from local data if a minimum of 2 years of run-
off data is available (Inst. of Hydrol. 1999, p.1/18). It is also important to note that for large return
periods (>100 years) the errors cannot be considered errors in a strict sense as the local estimate will
also be associated with some uncertainty. Rather these errors should be considered as differences
between local and regional estimates and the differences may be partly due to the regional estimation
and partly to the extrapolation to large return periods.

The random errors in Figure 5-2 are on the order of 40% or more, which is a significant error.
However, it should be noted that specific discharges (standardises to a catchment size of 100 kmz)
have been used here. If we allowed for differences in catchment area the errors would be only about
half of what is shown in Figure 5-2 as catchment area is always the best predictor variable for regional
flood frequency but has not been used here. We believe the comparisons in Figure 5-2 are more
meaningful than direct comparisons of flood discharges in which the errors tend to be dominated by a
few large catchments that are often of less interest than small catchments. The biases in Figure 5-2
are smaller than the random errors although some methods do give a substantial bias. Root mean
square errors will therefore be similar to the random errors.
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Figure 5-2: Errors of regional flood frequency estimates for ungauged catchments evaluated by
jackknifing. Ordinary kriging (OK) (without markers: GEV product moments, open circles:
GEV L-Moments), Kriging with uncertain data (KUD) using GEV (full circles), derived
flood frequency (Gradex) method (Triangles).

The predictive performance of the various regionalisation methods as assessed by jackknifing gives
the following results (Figure 5-2): The geostatistical regionalisation method kriging with uncertain data
(KUD) has the smallest bias and the smallest random error. This is likely due to the declustering pro-
perties of geostatistics and the method accounting for record length. Ordinary Kriging (OK) has a simi-
lar small bias, but the random error is considerably higher. This suggest that OK sometimes over- and
sometimes underestimates the flood quantiles which gives on average a small bias. GEV with linear
moments (GEV-LM) gives larger errors at high return periods than GEV with product moments. In
some catchments the specific shape of the flood frequency curve with a positive curvature around the
median of observed floods causes a high skewness due to the emphasis on the median observed
floods of the L-moment approach. The high skewness in turn tends to give higher flood quantiles for
large return periods than an estimate based on product moments.

The derived flood frequency (Gradex type) method combines flood data and rainfall information. For
small return periods the regional Gradex approach is a simple geostatistical approach using a Gumbel
distribution, while as one moves to more extreme events, rainfall dominance tends to take over from
catchment dominance. In the jackknifing approach we do not use local flood data but local rainfall
information. Thus the local and regional estimates at high return periods are dominated by the same
rainfall information and the error analysis gives a small bias and a small random error. As this analysis
is not very meaningful, we compared the regional Gradex estimates with local extreme value statistics
using a Gumbel distribution in Figure 5-2. The results of the error analyis can now be interpreted as a
difference between a method based only on flood data and a method using additional information. The
Gradex method shows some bias and a small random error. The bias is positive, so the method gives
estimates that are 'on the safe side' which is a result of the assumption of saturation.

To asses the value of an approach that accounts for record length, we compared the reduction of the
random error of the methods compared to an ordinary kriging method using only stations with records
longer than 20 years. The jacknifing analysis was performed for those catchments that can be assu-
med to be not affected by a short flood data sample and compared with the KUD results. Figure 5-3
shows the reduction in the random error when including stations with short record lengths as com-
pared to OK with long series only. For return periods lower than 40 years OK with short and long
series will reduce the random error. For a return period of 2 years, for example, the random error is
10% smaller than when using long series only. However, for longer return periods the random error is
higher (hence a negative reduction in Figure 5-3). This means that for the regionalisation of flood
guantiles associated with a return period of less than 40 years with ordinary kriging, all stations should
be used. For gquantiles higher than 40 years only stations with longer ohservation records should be
used in the kriging procedure. However, the kriging with uncertain data (KUD) approach proposed
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here reduces the random error for all return periods. For regionalising flood quantiles the latter method
is therefore recommended.
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Figure 5-3: Importance of the use of stations with short record length for regionalisation. Reduction of
the random error (%) of ordinary kriging (OK) with station of short and long observation
periods and kriging with uncertain data (KUD) as compared to OK with stations of long
observation periods only.

6 CONCLUSIONS

This intercomparison has examined the predictive performance of geostatistical regionalisation metho-
ds based on jackknifing techniques which assesses the errors due to regionalisation only. The kriging
with uncertain data (KUD) approach proposed here takes the uncertainty due to short record lengths
into account. The jackknifing analysis showed that the proposed method has a smaller random error
than the traditional geostatistical methods and a similar bias. Additionally the Gradex method was exa-
mined which gives reasonable results in Austria although it has a bias towards overestimating flood
guantiles. The geostatistical methods analysed in this paper are simple and only need minimum data.
However we anticipate that more complex methods based on process understanding and more exten-
sive data will allow more accurate regional flood estimates. Work on these more complex methods is
in progress.
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SEASONAL FLOOD PROBABILITY FOR SOUTH CANTERBURY NEW ZEALAND RIVERS
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SUMMARY

It is common practice to estimate flood probabilities on an annual basis. If flood magnitude probabili-
ties vary within a year, such results could be misleading. These differences need not necessarily arise
from obvious flood process differences, such as snowmelt versus rainfall. And they might be operatio-
nally important: when expected damage varies within years (e.g. for cropped land); or when the par-
ticular time period of interest for flooding to occur is less than a year (e.g. a dam or bridge project con-
struction site).

For the first time in New Zealand, a preliminary examination has been made of seasonal flood pro-
babilities for four rivers in a region previously characterised by annual data best fitted by an annual
maxima/EV2 approach. A peak-over-threshold/Generalised Pareto parametric approach was most
promising for the seasonal data, and suggested within-year probability variation for some rivers.

Keywords: floods, flood estimation, seasonal floods, partial duration, Pareto

1 INTRODUCTION

In NZ, regional flood estimation techniques for operational purposes have been refined in a series of
guasi-official publications, leading to the most recent, published in 1989. (Beable, McKerchar, 1982,
McKerchar, Pearson, 1989). For most of New Zealand, the parametric approach used in these tech-
nigues to estimate annual flood probabilities led to Extreme Value Type 1 (EV1 or Gumbel) as the
preferred probability distribution for extrapolating observed flood event data from rated river discharge
sites to smaller annual exceedance probabilities than the data range. A quite small minority of gauging
sites in particular regions provided data not well fitted by EV1, but apparently better fitted by EV2
distributions. One such area was South Canterbury, on the East Coast of South Island (Figure 2-1).
It is most common to estimate flood magnitude probabilities with the ‘conditioning event’ being the
passage of one year (calendar year or hydrological year). Useful statistical techniques derived from
extreme value theory do not proscribe the choice in this way; the conditioning event could also be the
passage of one summer, one spring, or one January, for example. In principle, a month or a week
could be the conditioning event, but the likelihood of threshold and independence difficulties, and non-
occurrence of “floods”, becomes greater as the chosen time period becomes shorter.
An underlying problem with many parametric approaches to flood magnitude probability estimation is
too few data points to provide confidence in parameter estimates. The problem is neither better nor
worse when a season, rather than a year, is the conditioning event. Gauged data periods for New
Zealand rivers are short in comparison to some in Europe. There are now periods greater than 30
years available at some sites, sufficient to conduct preliminary analyses of the kind described in this
paper.
Hydrological and catchment management reasons for considering seasonal flood magnitude
probabilities include:

» Expected flood damage variation during a year e.g. land in agricultural or horticultural crops. This

can affect benefit:cost analyses and priorities for flood control works.
e Vulnerability to flood damage during part only of a year e.g. a dam or bridge construction site.
This can affect the choice of construction start time and duration.

* Flood probability variation within years complicates the results of annual maxima analyses.
If any of these reasons exist for a site or area, and there is some a priori reason to believe that within-
year flood magnitude probability variation might be occurring, a seasonal analysis could be useful. The
first two reasons were present for the study location, and the third was suspected.
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2 LOCATION

Canterbury is one of the six regional government areas of South Island, New Zealand. South Canter-
bury is East of the main NE-SW mountain divide (the Southern Alps), and between approximately lati-
tudes 44° S and 45° S (Figure 2-1). There were seven rivers studied, indicated by name in Figure 2-2,
in which the dot symbols are approximately at the location of the discharge recording sites. Only data
from the four rivers having the longest periods of record are presented here.

Some information about the rivers and their catchments is given in Table 2-1. Hydrographic infor-
mation is summarised in Table 2-2 (in which dates are given as yymmdd). For this study, the two Orari
River records from closely adjacent sites, with 69505 replacing 69506, were combined using

changeover date 821231.
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Figure 2-1: South Island, New Zealand, Figure 2-2: Approximate gauging site locations for
with Canterbury region seven rivers in South Canterbury.
boundary marked, and South
Canterbury shown shaded.
Table 2-1:  Catchment and flow data for four rivers; total length of record used 33 years 1966-98.
River Catchment km® Mean Flow m®/s Mean Ann. Flood m%/s
Hakataramea 896 6.1 191
Opihi 406 5:5 165
Opuha 458 9.7 204
Orari 520 10.6 215
Table 2-2: Hydrographic data for four rivers.
River Site # Levels Start Levels End First Rating Last Gap
Rating Days
Hakataramea 71103 631231 990118 631126 981204 74
Opihi 69618 630701 920125 640511 970912 384
Opuha 69614 620301 920115 640801 980116 268
Orari 69506 650812 830613 640504 -
Orari 69505 820908 990107 981014 55

The climate in South Canterbury is temperate, with mean annual rainfall about 600 mm at Timaru
(Figure 2-1), and much higher along the western mountain boundary. It is about 4000 mm at The Her-
mitage tourist hotel at Mt Cook, and up to about 8000 mm at high elevations in the mountains. Yellow-
brown and yellow-grey earths and rendzina soils on plains areas (Cutler, 1968) overlie moderately
indurated greywacke (quartzite), non-foliated schist and tertiary rocks (Mutch, 1963).
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3 ANNUAL ANALYSES
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Figure 3-1: Discharge hydrograph 1987 to 1993, Hakataramea River, annual maxima arrowed.

Figure 3-1 shows part (7 years) of a record of discharge, converted from recorded stage heights using
current meter ratings, for the Hakataramea River. Annual maximum flows are indicated by the arrows.
Provided that a multi-peaked flood does not occur through a year change, in which case the last
maximum in one year might not be independent of the first maximum in the next year, there is no par-
ticular difficulty in identifying the series of annual maxima.

An appropriate probability distribution for maxima of flood events is the General Extreme Value (GEV).
The well-known and often used EV1, or Gumbel, distribution is the special case of GEV when the
shape parameter, «, is zero (Stedinger et al., 1993).
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Figure 3-2:  Annual maxima 1966-1988 for four rivers, against EV1 reduced variate, y;.
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Figure 3-1 also indicates that in this (complete duration series) approach, some floods of greater
magnitude than those included are left out because they occur in a year containing a flood of higher
magnitude (e.g. May 1987, May 1993).

The annual maxima for four rivers 1966-1998 are plotted in Figure 3-2 against the EV1 reduced vari-
ate, y+1. The Gringorten (1963) plotting position formula relating rank to probability has been used. y1 is

X—U
(1) y=—

2) Fi(x)=e
in which:

X flood discharge magnitude
u location parameter
o scale parameter

As cumulative probability is the complement of exceedance,
(3) yi=-In(-In(1-AEP))

where AEP is the annual exceedance probability p(X = Xreference). Values for u and o were obtained in
this study using linear moments (Hosking, 1988; 1990) to fit equation (2) to the data.

From equations (1) and (3), flood magnitude data conforming to equation (2) would plot linearly
against y1, which is a measure of probability. The data in Figure 3-2 clearly do not plot linearly.
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Figure 3-3: Annual maxima 1966-1988 for four rivers, against EV2 reduced variate, y-.

In Figure 3-3 the same flood magnitude data are shown plotted against the EV2 reduced variate, yo. v
has the same linear relationship with x, but the cumulative probability distribution is
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1
” F,(x) = e[l_ K(r&— M)JK e

and the relationship with AEP is

) i = %{1—[—111(1,4513)]"}

The additional parameter introduced is
K shape parameter

Flood magnitudes conforming to equation (4) would plot linearly against y,, which is a measure of pro-
bability. The fit shown in Figure 3-3 (also shown by the three rivers of shorter total period of record in
Figure 2-2) is why this region has been previously said to be “EV2” rather than the “EV1” regions typical
of most of New Zealand (McKerchar, Pearson, 1989). But clearly the linearity is far from perfect.

A censored partial duration series, of independent flood magnitudes greater than a specified thre-
shold, is an alternative to the complete duration series formed from one flood magnitude maximum for
each conditioning event, such as a year.
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Figure 3-4. Discharge hydrograph 1987 to 1993, Hakataramea River, independent peaks > 50 m°/s
arrowed.

Flgure 3-4 shows the same period of record as Figure 3-1, but the magnitudes indicated by arrows are
all “independent” peaks greater than a “threshold” of 50 m®/s. These can be used to form a whole-
record peak-over-threshold (POT) series.

The multiple flood peaks visible in March 1987 and August 1990 do not arise from independent
“events”, but it is not a trivial matter to decide on “independence” in general. The eight peaks indicated
here exceed a threshold discharge equal to mean discharge plus three standard deviations (rounded
to nearest 5 m*/s). This gives a similar number of flood events to the complete duration series (seven
in Figure 3-1), but again, it is not a trivial matter to decide on a threshold value in general.

Lang et al. (1999) have reviewed POT modelling practice and offered guidelines, based on accumu-
lated international experience, for setting independence criteria and selecting threshold values in cir-
cumstances like these.

An appropriate probability distribution for independent POT flood events is the Generalised Pareto
(GPa). A special case of GPa when the shape parameter, 8, is zero is the 2-parameter exponential
distribution (Stedinger et al., 1993).
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The POT magnitudes for 1966-1998 for the same four rivers as in Figure 3-2 are plotted in Figure 3-5
against the GPa reduced variate, y,. Again, the Gringorten (1963) plotting position formula relating
rank to probability has been used. y, is

(6) ¥ 5=

and the cumulative probability distribution, Fp, of x is

1

Xe—= ¥ 5
x)=1-[1-06

in which:

X flood discharge magnitude
v location parameter

B scale parameter

) shape parameter

As cumulative probability is the complement of exceedance,

) y, = ;[1— (AEP)E]

where AEP is the annual exceedance probability p(x = Xrwierence). As for GEV, linear moments
(Hosking, 1988,1990) were used to evaluate v, J and 6.
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Figure 3-5: Annual peaks-over-threshold 1966-1988 for four rivers, against GPa reduced variate, y,.
From equations (6) and (8), flood magnitude data conforming to egquation (7) would plot linearly

against yp, which is a measure of probability. Comparing Figures 3-2 and 3-5 does not immediately
suggest superiority of either approach in terms of conformity of the data to a linear model.
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4 SEASONAL ANALYSES

A previous investigation of Hakataramea River data (Painter, Larsen, 1995) suggested that flood mag-
nitude probabilities varying within years could be affecting interpretation of annual probabilities. That
preliminary study investigated weather pattern effects on flood magnitude probability, but without clear
relationships being established. Instead, mixtures of distributions were apparent, with seasonality of
probabilities suspected.

South Canterbury rivers are short and steep (Figure 2-2), rising in mountain and foothill areas, and
flowing in predominantly rural floodplains to the Pacific Ocean. Most have some degree of river control
imposed by stopbanks (levees) to prevent flooding of highways, towns and agricultural land for
livestock and cropping. The flooding which does occur (Connell et al., 2001) thus has different costs
depending on the state of the agricultural land at the time of flooding. In 1997, a dam under construc-
tion on the Opuha River to provide irrigation water supply and hydro-electricity failed when a flood ex-
ceeded the capacity of the diversion works in place at the time. The flood probability determination
was controversial, and the legal and financial implications were important (Anon, 2001).

The three hydrological and catchment management reasons for considering seasonal flood magnitude
probabilities listed in the Introduction therefore have applied in South Canterbury.

For seasonal, compared to annual, analyses, the same two approaches could be taken: selecting
seasonal maxima for a complete duration series, or selecting peaks over a threshold for a partial
duration series. Some of the difficulties with each approach described for annual analyses are exacer-
bated with the reduced length of record which follows from extracting seasonal data from a total
record. In addition, there is now the problem of deciding what are “seasons” in order to most appro-
priately select the “conditioning event”. Ideally, the most relevant seasons would be “flood behaviour”
seasons. But in the present context, for the study region climate, geology and land use, this flood
behaviour seasonality is unknown, and whether it exists is unknown.

The simplest rational approach is to adopt the conventional (austral) seasons: December-February
(DJF) summer; March-May (MAM) autumn; June-August (JJA) winter; September-November (SON)
spring. Once databases and algorithms are appropriately established, varying the season boundaries
only implies extra computational effort.

Hakataramea Seasonal Maxima 1966-98
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Figure 4-1: Seasonal maxima 1966-1988 for the Hakataramea River, against EV2 reduced variate, Y.

Seasonal maxima selection, and seasonal peak-over-threshold selection are as in Figures 3-1 and 3-4,
respectively, but in each case the time axis is discontinuous, comprising the sequence of 3 months from
each year in the total record appropriate to the chosen season.

Comparing the results from all seasons for each river indicates whether or not flood probability varia-
tion within years is occurring. Comparing the results from all rivers for each season indicates (as for
annual analyses) whether or not regional analysis is likely to be useful.
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Figure 4-1 shows the seasonal maxima for the Hakataramea River, plotted against the EV2 variate, yo.
The implication from Figure 4-1 is that spring and summer plot with similar flood probability, and that
this differs from each of autumn and winter. It is also noticeable that there is a magnitude gap from
about 100-200 m%/s in the winter (JJA) data. Summer and winter maxima plot differently for the Opihi
and Orari Rivers, as for the Hakataramea River, but autumn and spring behaviour is not consistent for
all four rivers. Seasonal data are not clearly different for the Opuha River.

Figure 4-2 shows seasonal peak-over-threshold data for the Hakataramea River, plotted against the
GPa variate, y,. The implication from Figure 4-2 is that autumn and summer plot with similar flood pro-
bability, and that this differs from each of spring and winter. Both approaches suggest that summer
and winter are different, but are not consistent about autumn and spring. Only summer plots differently
for the Opihi River, only autumn for the Orari River. In contrast to the seasonal maxima data, the peak-
over-threshold data for the Opuha River show summer and autumn data together, but different from
each of spring and winter.
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Figure 4-2: Seasonal peaks-over-threshold 1966-1988 for Hakataramea River, against GPa reduced
variate, yp.

Figure 5-1 summarises the seasonal peak-over-threshold results, for the four rivers, by season.

5 DISCUSSION & CONCLUSIONS

The relative advantages of using annual maxima to derive a complete duration series, or peaks over a
threshold to derive a partial duration series, have been well discussed in the literature in the context of
annual exceedance probabilities of floods (Madsen et al., 1997). The occurrence of floods in mixtures
of distributions, due to differing rainfall or catchment processes, has also been reported and discussed
(Amell, Gabriele, 1988). Seasonal occurrence of floods is well understood in many climatic contexts,
from monsoonal to arid (Meigh et al., 1997) and when spring snowmelt contrasts with rainfall events in
other seasons (Stoddart, Watt, 1970). This study draws on all three of these contexts, but applies the
understanding to seasonal probabilities of flood magnitudes in a climatic and geological setting where
the reasons for within-year variation in probability, if any, are not obvious.

The preliminary results for seasonal flood magnitude probabilities reported here for four rivers in South
Canterbury, New Zealand, indicate the likelihood that probabilities do differ in some seasons from
others, and therefore differ from the usual annual probabilities. Seasonal maxima complete duration
series and GEV fitting by linear moments, leads to “EV2” values for the shape parameter, x. The
requirement that the maxima be chosen from among an “asymptotically large” number of “floods” in
the conditioning event (Leadbetter et al., 1983) is not well met, and this approach is not preferred.
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Figure 5-1: Best-fit GPa to seasonal POT series for four rivers 1966-1998.

An approach using partial duration series of independent peaks over a threshold, and GPa fitting by
linear moments, is preferable, providing appropriate choices of criteria for independence and threshold
values are made. Such an approach used here showed seasonal differences in flood magnitude pro-
babilities which differed in some river/season cases from the AMS/GEV approach.
The present results were obtained using the following relatively simple criteria:

» Event peaks independent if separated by three days or more

e Threshold discharge equal to mean plus three standard deviations

e Mean arrival rate equivalent to at least 1.6 events per year
A recent review (Lang et al., 1999) has provided “coherent practice-oriented guidelines” which will
allow refinement of the methodology for a closer examination of the data for these four rivers, and the
three others also shown in Figure 2-2, which now each have 19 years of data available. Another
recent paper (Martins, Stedinger, 2001) has provided means of restricting the shape parameter, 8, of
the GPa distribution, to a “statistically physically reasonable range”. Two of the 16 fitted values of & in
this study (4 rivers, 4 seasons) were “absurd” (Opihi Spring +0.270, Opuha Winter +0.453, Figure 5-1).
There are many traps and difficulties in working with small samples of flood data from unknown parent
distributions {Cunnane, 1985). Some of these are made worse by choosing to examine seasonal data.
But doing so shows promise both for explaining some hitherto mysterious behaviour, and for providing
operationally significant information.
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SUMMARY

The probable maximum flood (PMF) was estimated in Karun, a large mountainous basin in Iran, in

several studies with different results during the three last decades. Four major sources of errors were

found in these studies. This is similar as found for other large mountainous PMF studies. These are as

follows:

1) There was not considered the continues duration of precipitation for flood events.

2) The use of the annual depth-area-duration (DAD) curves in the basin with mixed condition of snow
and rain.

3) The using of the parameters of rainfall-runoff models in simulation of basin in which the optimiza-
tion conditions were not similar to PMF estimation condition.

4) The errors in snowmelt simulation in critical condition of PMF generation.

An analysis of the sources of errors and development of a procedure corresponding to the large

mountainous basins is the aim of this paper.

Keywords: Probable maximum precipitation, PMP, Probable maximum flood, PMF, Mountainous ba-
sin, depth-area-duration (DAD), Rainfall runoff models

1 INTRODUCTION
1.1 Definition

Chow et al. {1988) defined the probable maximum flood (PMF) as "the largest flood to be expected
assuming complete coincidence of all factors that would produce the heaviest rainfall and maximum
runoff. This is derived from a probable maximum precipitation (PMP), and hence its frequency can not
be determined". Different authors involved in PMP and PMF determination (Wang and Revell, 1983;
Wang, 1984; Wang and Jawed, 1986; Mutreja, 1986) have used this definition.

1.2 Geography of the Karun River Basin

The Karun river basin as a mountainous region is located in southwest of Zagross, Iran. As shown in
Figure 1-1 the entire Karun river basin is about 32500 km? in Gotvand or 24000 km? in Pol-e -shalu
hydrometery stations. The main sub basins of Karun are Khersan, upper Karun (Armand basin) and
Bazoft, which are jointed to each other and form the Pol-e -shalu basin (Table 1-1).

1.3 Previous PMF studies in the Karun

Several studies have been carried out for the estimation of the Probable Maximum Flood (PMF) of the
Karun basin in order to develop the design flood criteria for a set of dam construction project planned
along the Karun River. Among the studies concerning hydrological analysis of the Karun basin a num-
ber of reports have been dealt whit the verification of the magnitude of the PMF's components evalua-
ted, all, for a common section of the River.

The resulting components of design floods are compared with real hydrological characteristics of the
region based on observations during almost a century, possibly a record of several thousands of years
of nob-exceedance can be constructed on the bases of undamaged ancient monuments in the lower
parts of the Karun basin. The degree of conservatism in the estimation of the PMF has to be clarified
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by comparison whit these proxy observatlon The PMF components of the Karun basin in the common
section of Pol-e -shalu (24,200 km®) are shown in Table 1-2.

Got\.rand/4

Iran map

Pol-e-shalu

Figure 1-1: Karun basin in Iran map
Table 1-1:  The main sub basins of the Karun basin at Pol-e —shalu.
Sub basins Area (kmé) Maximum elevation from | Maximum elevation from
mean sea level (m) mean sea level (m)
Karun at Gotvand 32500 75 4500
Karun at Pol-e - 24200 700 4500
Shalu
Bazoft at Marghak 2175 980 4200
Upper Karun at 10071 1050 4200
Armand
Khersan at Barz 9000 815 4500

Table 1-2:  Results of PMF studies in the Karun basin at Pol-e —shalu
Institute or Consultant Peak Dlscharge Volume of the PMF | Duration of the
(m’s™) flood (10° m®) PMF flood
(days)

Harza (1967) 26600 1970 3
LWRD/Acers (1982;1984) 27900 16000 20
Lahmayer Int. Con. And Moshanir 21100 7920 20

{1995)

Mahab Ghodss and Acers (1991) 22350 9600 20

Sedghi (1992-a; 1992-b) 11500 6052 15
Moshanir-Caitec (1996) 25200 13050 20

With regarded to the definition of the PMF as a reasonable upper physical limit of flood in a finite basin
the following questions could be raised:
- Isit reasonable to expect the occurrence of a flood having a peak discharge of the order of 10000 to
30000 m%s™ in this geographical location?
- What range would be the best estimate of volume of the PMF flood at the outlet of the Karun basin
among the values, which range from 1. 97*10°to 16*10° m®s™?
It is obvious that in determination of the probable maximum precipitation (PMP), and from further com-
putation for a finite basin with specific characteristics, based upon different methodologies and avail-
able data, many assumptions can be considered. The PMF components with a range of discrepancies
shall be evaluated depending on the studies.
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Since the most important point in hydrological studies concerning evaluation of design criteria is to
obtain as realistic and significant values for the design parameters related the major structures, a re-
view of basic concept and hydrological factors could assess the degree of discrepancy in consecutive
steps of the PMF determination of the watershed under study.
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Figure 1-2.  PMF hydrographs of Karun Basin at Pol-e-shalu based on different studies shown in table
1-2.

2 COMPARISON OF CASUSAL FACTORS
2.1 Comparison of the PMP and the PMF components

The numerical values of hydrological factors affecting the PMF estimation of the Karun basin for each
study are presented in table 2-1. The PMF hydrographs and the appropriate values of the compaonents
from the above references are shown in Figure 1-2.

2.2 PMP evaluation

There are some differences in the origin and the methodology in the estimation of PMP in the above
studies. The original storm is either selected as "in situ rainfall" or transposed from the adjacent re-
gion. The significant difference in selection of duration, depth, time and Arial distribution pattern of the
original rain and the maximization factor converting rainfall to PMP cause a large discrepancy affecting
the results. Some examples are presented for each of the affected factors:

2.2.1 PMP duration

The runoff is generated by continuous effective rainfall duration. Due to absence of recorded values of
rainfall, the 24 hours increment was considered for assessment of observed storms and relevant PMP. A
detailed analysis of recorded rainfall in some parts of the Karun basin suggests a significant overesti-
mation concerning initial storms and the PMP ’s duration. Figure 2-1 and Figure 2-2 shows the cumu-
lative and incremental values of rain during a historical storm recorded at Pol-e-shalu station. The conti-
nuos duration of rain at this station is almost 40 hours. This value has been recorded during the Dec.
1986 storm which may be the most severe storm observed over a large mountainous area of about
400,000 km® in the Zagross range in the southwest part of Iran. The Depth Area Duration curves of this
storm are established for 24 hours increment of time (Figure 2-3). This document was considered as a
description of the regional characteristic of a heavy storm and has been used as a Standard Project
Storm, SPS, used in the estimation of Standard Project Storm, SPF, for some dam construction project
in Iran. Figure 2-2 shows the DAD curves of the Dec. 1986 storm over 400,000 km” area.
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It should be mentioned that the observed values of rain during different duration and over definite area
are comparable with the estimated values of the PMP by different references. Figure 2-1 shows that
the observed continuous duration of a sever historical storm (40 hours) over a part of the Karun basin
is much less than the 7 days (192 hours) duration of generalized PMP which is considered as Conti-
nuous rainfall, in Ref. 6. This very high modification of intensity and continuous duration of rainfall
seems to be unreasonable. The result of such synthetic temporal pattern of precipitation produces
unreasonable volume and peak discharge in a large scale. The Numerical values of DAD of the Dec.
1986 Storm are presented in Table 2-2.

Table 2-1:  Numerical values of hydrological factors of the PMP and the PMF in the Karun basin at
Pol-e-shalu
Step of Parameters References
Studies 1 2 3 4 5 6
PMP - Selelct(lad depth of rain to be 55l . SE . o7
evaluation maximized (mm)
Transposed or maximizing factor | 0.8 1.51 1.87 1.51 1.4 1.53
Maximized rainfall (PMP) in mm | 176 432 430 430 380 425
PMP duration in days 1 9 7 45 7 7
Snow ' Base
Equivalent snowmelt depth None | 015 Unde- 5H Flow
(mm) PMP fined 40
Runoff Runoff coefficient 0.5 1.61 0.8 0.87 0.53
Excess rainfall (mm) 86 696 339 402 201
Time and arial | Point Excess Rain (mm) 966 480
distribution Intensity mm/day 86 5 180
Unit Time of concentration (hrs) 16 16 40 175 | 53
Hydrograph Unit Peak Discharge (m’s ') 300 | 120 |63
PMF Base time in days 4 20 20 20 15 20
Hydrograph Peak Discharge(m®s”) 26600 | 27900 | 21100 | 22350 | 11150 | 25200
Volume (10° m?) 1970 | 16000 | 7920 9600 | 6052 | 13050
600 —
—=—PMP of B9in Ref.6 | "
500 1 [———
e Observed Rain of Dec. | x/
‘E 400 15 L/ - B
% 300 — ]
8 00| // -
- p’/
0 . . ; |
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Figure 2-1: Comparison between the cumulative curves of recorded continuous observed rainfall and
the PMP of B6 in reference 6.
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Figure 2-2: Comparison between the hyetograph of a continuous observed rainfall and a 6 hrs Incre-
mental PMP of B6 in reference 6.

Figure 2-3: DAD curves of Dec. 1986 storm over a 400,000 Km® area in southwestern part of Iran.

Table 2-2:

Depth in mm
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Depth area values during Dec. 1986 storm in southwestern part of Iran.
Area (Km?) | Duration (hrs) 12 24 48 72 96
100 168 226 378 450 510
500 155 212 345 420 472
1000 148 203 328 400 455
5000 128 174 280 342 390
10000 117 157 254 310 354
50000 79 107 178 212 243
100000 60 78 130 160 181
400000 5 12 25 36 48
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2.2.2 The PMP temporal pattern

The temporal pattern of the PMP must correspond to the regional condition of a sever storm. Trans-
position of patterns such as SCS types Il lll and | are not applicable to Karun climatological conditions.

2.3 Snowmelt Contribution

The snowmelt contribution in flood flow generation was considered in different manner in the studies
shown in table 1-2. In Ref. 1 the snowmelt is almost neglected, but this factor is highly important in
Ref. 2 and 3.

In Ref. 2 a rough ratio of 18% of the total precipitation was proposed as a snowmelt depth that con-
tributed to floods up to a return period of 10000 years. In this Ref. a HEC1 model application, based on
antecedent snowpack water equivalent prior to PMP, a probabilistic critical temperature sequence during
the rain and an unrealistic lapse rate resulted in a large overestimation of the PMF with a runoff coef-
flClent of 1.61. The total value of snowmelt of order of 266 mm in the whole basin may causes at least
6*10° m® overestimation in volume and about 6000 to 7000 m’s™”" overestimation in peak discharge.

2.4 Rainfall Runoff relationships

In order to carry out the estimation of the size of many rainfall runoff components, a set of flood hydro-
graphs were analyzed based on the sever floods characteristics. Flood hydrograph parameters like peak
discharge, total volume, base flow, total runoff, and net runoff were estimated and compared with the
storms producing the floods. The coefficient of runoff for the entire basin and the three major sub basins
has been evaluated for each flood event. A pattern of SCS runoff curve numbers has been designed to
carry out a comparison for the verification of observed runoff-rainfall potential of basins to show the unrea-
sonable reliability of rainfall-runoff relationships for PMP values. Figure 2-4 shows the obvious discordance
between rainfall depth as PMP and the relevant values of runoff according to the SCS pattern.

Karun at Pol shalu
SCS curve numbers 30,40 & 55 covering chserved P & Rn
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Figure 2-4: Comparison of rainfall runoff relationship in estimated PMF and observed floods in a SCS
pattern of runoff (Rn) vs. precipitation (P) at Pol-e-shalu.

The eight most sever floods that have been observed in the Karun basin at Pol-e-shalu were selected
and analyzed in order to estimate the hydrological balance parameters. The results are summarized in
Table 2-3. Table 2-3 shows that the effective basin area is between 77.2 to 99.7 percent of the total
basin area during different storms due to freezing effects. Although this table shows that the net runoff
coefficient varies from 1.5 to 18.1 percent based on rain and snowmelt in different season of years that
this parameter takes values between at least 50 to 161 percent in PMF studies shown in table 1-2. The
annual hydrograph components are computed for the Karun basin at Pol-e-Shalu in 3-index water years
(1992-93, 1996-97, and 1997-98) which are the wettest, dry and normal to wet years respectively. The
results are summarized in Table 2-4. This values show that the net annual runoff is varying from 41 mm
for the dry year (1996-7) to 165 mm for the wettest year (1992-93) of observations.
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Table 2-3:  Flood hydrograph components during selected severs storms in the Karun basin at Pol-e-
shalu (24,200 km?).
Date of Occurrence Feb-Mar | Dec | Nov | Mar-Apr | Mar Nov-Dec | Feb | Jan
1978 1989 | 1994 | 1998 1998 | 1986 1993 | 1978
Effective Area (%) 77.3 91 98 99 98 83 88 74
Peak Discharge 2384 3907 | 2935 | 4590 6230 | 3470 4564 | 2858
(mS/SGC)
Total Volume (10°m®) | 568 682 | 392 | 681 731 | 693 1009 | 338
Ba%e Fslow Volume 314 280 | 328 370 345 362 482 193
(10" m")
NetGF{Lénoff Volume 253 402 64 311 385 332 528 144
(10°m")
Rainfall (mm) 108 150 174 88 112 152 129 199
Snowmelt (mm) 13 7 5 20 30 8 8 37
Rain+ Snowmelt (mm) | 121 157 180 108 142 160 137 | 236
Net runoff (mm) 14 18 3 13 16 17 25 8
Runoff Coef. (%) 11.2 11.7 | 1.5 11.9 1.4 | 104 18 3.4
Equivalent SCS Curve | 48 42 28 52 44 42 52 25
No.
Table 2-4:  value of runoff components for the annual water balance during three distinguished water
years at Pol-e-shalu.
Water year | Annual Annual net | Annual Net runoff | Base flow | Ratio of total
total flow | runoff (mm) | base flow coef. (%) | coef. (%) | annual flow to
(mm) (mm) mean annual flow
1992-93 833 165 668 20 80 2.14
1996-97 344 41 303 12 88 0.88
1997-98 494 110 384 22 78 1.27

2.5 Volume and Peak discharge of PMF

Rainfall -runoff models were developed for the evaluation of the PMF hydrographs in the different
studies shown in table 1-2. The common model is the HEC-1 model, which was used in order to opti-
mize parameters and to convert PMP to PMF using observed data of many historical sever storm
Floods observed in the Karun basin. The shape of unit hydrograph, which affects seriously the volume
distribution and the value of g)e1ak discharge of the PMF, differ significantly in these Sztudies. In fact, it
varies between 60 to 300 m’s" per one mm of precipitation in a basin of 24,200 km®. Consequently,
the very large values of peak discharge of the PMF ranging from almost 10° to 30*10° m®s™ for the
study Basin are due to partly overestimation of this parameters. A very detailed study was performed
to verify the magnitude of peak discharge as related to flood volume of observed events in the region.
A series of data containing of more than one hundred flood events was analyzed for three sub basins.
These are Armand (10000 kmg), Bazoft (2250 km2), Khersan (9000 kmz) and the entire Karun basin at
Pol-e-shalu (24200 kmz). Variables such as max daily and instantaneous discharge, total volume and
corresponding depth, base flow and its depth, runoff volume and depth, time parameters such as time
to peak, recession time, and base time were evaluated. Some results of this study are used in order to
verify the reasonability of the volume of the PMF and the peak discharge. The results of this study are
summarized in Figure 2-5 and Figure 2-6. Figure 2-5 shows the net runoff versus peak discharge
(maximum of mean daily values) for the entire flood events at Pol-e-shalu.

Similarly, scattered charts were developed for the different time to peak to demonstrate the effect of
flood duration as related to storm duration and to verify the frequency of occurrence of floods with
respect to the importance of volume or peak discharge.

Finally the position of different PMF's volume and peak discharge have been compared using the
general pattern of the entire observed flood event of the Basin during a long historical period, consi-
dering the antiquarian index of the region.
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Figure 2-5: Scattered values of net runoff and peak

2.6 Comparison of PMF and observed floods
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Figure 2-6: Observed daily peak discharge vs.
net runoff in the Karun basin at
Pol-e-shalu and compared with the
position of pervious estimated
PMF points.

Two examples are presented in this paper in order to show the degree of increase in key parameters
in some studies. Table 2-5 shows the PMF increased values of PMF parameters with respect to maxi-
mization factor of PMP in Ref 2. In Table 2-6 the increasing ratios of peak and volume of PMF hydro-
graphs with respect to maximization factor of the PMP is presented for some storm flood events selec-
ted PMF evaluation. Generally, according to the above-mentioned ratios, an increment about 35 to 89
percent in rainfall depth over a basin like the Karun at Pol-e-shalu (24,200 kme) can resultin a flood 10
times greater than observed flood by peak and volume.

Table 2-5:  Comparison of observed flood and PMF parameters.
Storm flood Observed rainfall | Runoff Runoff Runoff Runoff coefficient
events depth (mm) net (mm) | base (mm) | coefficientnet | total
Jan.1968 248 36 115 12.7 16.7
Jan.1975 285 29 17.4 10.2 16.3
PMP/PMF 432 629 67 145 161
Of Increase 1.52 9.7 4.6 12.7 9.8
Ratio

Table 2-6: Growing ratios of PMF parameters with respect to PMP maximization factor.
Storm-Floods Ref. | PMP maximization ratio | PMF Peak discharge | PMF volume

increased ratio increased ratio

Jan.1968 2 1.35 10.9 10.7
Jan.1968 3 1.89 8.4 8.2
March 1972 2 1.43 6.2 9.9
March 11972 3 2.45 7.0 10.8
Jan.1976 2 151 12.9 12.7
Jan.1976 3 1.87 8.2 7.8
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3 REVIEW STUDIES

Since 1998 the Iran Water and Power Resources Development recommended a general study of re-

evaluation of the PMP/PMF in the Karun Basin. This study was planed to review the Flood Designed

Criteria for a number of 10 dams construction projects on the Karun River. The Authors of the present

article conducted these studies.

Here we present briefly the methodology of the work and a summary of the results for the Pol-e-shalu

station in order to compare the key values with those of previous studies.

Parameter selection;

Based storm flood:

- Selection of most sever flood observed during spring, in order to maximizing rainfall and snowmelt
over entire basin

- Selection of continuous duration of storms and analyzing recorded rainfall of some rain gauge
stations in view of the DAD curves construction.

- Calculate snowmelt based on snowpack evaluation and real time temperature variation before and
during the storms

- Hydrograph analysis of selected flood hydrographs for a number of subbasins based on hourly-re-
corded data.

- Calibration of the HEC1 model by real times parameters and control of the calibrated parameters
e.g. loss coefficient and unit hydrograph components,

The resulting of the PMF parameters concerning the Karun basin at Pol-e-shalu are presented in

Table 3-1 and the PMF hydrographs are shown in Figure 3-1.
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Figure 3-1: 4 Hydrograph computed as the PMF based on the 3 most sever storm and flood in Karun
basin at Pol-e-shalu.

Table 3-1: Peak and discharge of PMF in the Karun basin at Pol-e-shalu.

PMF Components PMF based on late | PMF based on PMF based on | PMF based
Feb. 1993 flood May 1998 flood | late Feb. 1993 | on Dec. 1986
flood flood
Peak discharge (m’s™') | 12478 14169 12015 14968
Volume in (10° m?) 3364 3093 4364 3656
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4 CONCLUSION

With respect to preceding description of the six mentioned Studies in table 1-2, and with comparison

of parameters used in PMF computation, it is clear that an important degree of conservatism is asso-

ciated with evaluation of causal factors in producing the PMF of the Karun. The causal factors that can
lead to overestimation in the size of the calculated flood in a region like the Zagros mountainous area
in Iran could be described as follows:

1- The Zagross Mountain in the northwest to southeast of Iran is a terminal barrier receiving the Medi-
terranean and Sudanese air masses with a limited potential of humidity and with a relative low
quantity of perceptible water. The duration of activity of such systems could be in order of many
days during winter and shorter in spring, but the real duration of effective rain producing runoff is of
the order of many hours. Thus the first factor affecting the PMP value could be the assumptions of
longer discrete duration causing a non-realistic depth-duration of rainfall.

2- Using synthetically time distribution pattern of PMP rain affects seriously the shape of the hyeto-
graph of the PMP having a multiple effects on runoff generation.

3- The use of generalized D-A-D curves in order to evaluate the areal distribution of storm and related
PMP in a mountainous region with very cold climate causes a significant overestimation on depth-
area relationship of precipitation as rain. It could be mostly due to variable contributing areas due to
freezing in parts of the basin.

4- Use of an appropriate method for evaluating the basin retention during rain is very delicate. The
SCS curve number method is specially applicable to agricultural conditions of soil, is very far from
giving realistic results for large area covered by geological karstic formation which have indeter-
minable macro porosity as usual by the mentioned methed.

5- Finally, the unit hydrograph peak discharge, evaluated normally by HEC1 application or synthe-
sized by empirical methods was mentioned as a key factor affecting the PMF volume distribution
and causing a significant increase of peak discharge of the calculated PMF.
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SUMMARY

Index flood method is one particular approach in flood frequency analysis used to estimate floods at a
specific site in which the regional growth curve is used in conjunction with the at-site index flood. The

index flood in this case is the at-site mean annual flood, O , obtained using flood records at a near-by

gauging station. However, instances arise when such data records are not available and ¢ have to

be obtained using a regression relationship between mean annual flood and numerically measured
catchment characteristics such as catchment area, slope, rainfall etc. The reliability of floods so
estimated is of major concern and a number of methods were suggested in the past to estimate the
standard error of the flood magnitude. This study, using three data sets, shows that the standard error
calculated by these methods differ from one another and these difference are more pronounced when
the standard error is high. These differences are also seen in the equivalent number of years calcu-
lated using the four different methods.

Keywords: Floods, Flood frequency, Relative worth, Regression, Index flood, Regional Growth Curve,
standard error

1 INTRODUCTION

In the index flood method of flood frequency analysis, a regional growth curve along with the at-site
mean annual flood is used in estimating an at-site flood Qr of return period T. The mean annual flood,
0, at ungauged site is estimated using a regression relationship between 0 and catchment cha-
racteristics. It is important to know how reliable these estimated Qr values are, relative to those esti-
mated using data records. The reliability is assessed with respect to the standard error of the regres-
sion estimate. A number of expressions were suggested (Nash and Shaw, 1965; Hardison, 1975;
Hebson and Cunnane, 1987) to estimate the standard error of the estimated flood magnitude. More-
over, Nash and Shaw (1965) defined a quantity termed equivalent length of record to describe the
worth of the regression estimate of O .

The equivalent length of record (n’} is the length of record of a station when, the standard error of the
at-site estimate of Q is, equal to the standard error of the regression estimate of O .

In this paper, the results of estimating the standard error of the regression estimate of @ by the dif-
ferent existing methods are compared over a number of data sets. The corresponding relative worth of
the estimates of the Q0 expressed in equivalent number of years is also examined. These results are

studied when both Ordinary Least Squares (OLS) method and Weighted Least Squares (WLS)
method (Draper and Smith, 1981) are used in calibrating the regression model.

2 BACKGROUND

Nash-Shaw (1965) in their study of 57 British catchments for a regression relationship between O
and catchment characteristics examined the relative worth of the estimated O . This was accompli-
shed by equating the standard error of the regression estimate to the standard error of the at-site
estimate, expressed in terms of the at-site sample size. It was found that the standard error of O esti-
mated using a single year of data record, is less than the standard error estimated from regression
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relationship between O and catchment characteristics. Therefore it was concluded that the regres-
sion estimate is worth less than even one year of data.

The expression used for the standard error of In Q0 was that for a station at the centroid of the data
space although it was generally used for any station. In the Flood studies report (NERC, 1975),
standard error of 9 was estimated specifically for a station at the centroid of the data space. This
result confirmed the previous conclusion by Nash-Shaw (1965) that the regression estimate of g is
worth less than one year of record.

There was a doubt about the accuracy of the expression used in Nash-Shaw method as it is an
asymptotic result which may not be quite valid for practical samples sizes. An alternative method is to
estimate the standard error of ¢ experimentally in a Monte-Carlo study. Hebson and Cunnane (1987)
calculated the standard error of ¢ , obtained by a regression relationship, from a simulation experi-
ment for selected stations representing low, medium and high Cvs. Although the high Cv station had a
O estimate with lower standard error than the other stations of interest, all three stations indicated
that n” was less than one year.

Kumar (1991) continued the work of the previous two authors examining the standard errors of ¢
estimated by regression models with different combinations of catchment characteristics. He observed
that the standard error of ¢ varied with the combination of catchment characteristics in the model,
which in turn resulted in improved values for n” with some combinations of catchment characteristics. It
was concluded that a specific high Cv station resulted in an equivalent length of record of 5.97 years
using a regression model of Q0 ~ (Area, Stmfrq, SAAR and MSL).

Hardison (1971) used the same argument of equating the standard error of regression estimate to the at-
site estimate of the standard error of Qr. Thus the relative worth of the regression estimate is calculated
as equivalent number of years of record as was done by previous authors. The estimator for standard
error of 0 used by Hardison was different from the estimators used by other authors cited above.

He assumed, InQ  at the ungauged station obtained from the regression relationship to have a Nor-
mal sampling distribution. The standard deviation of this distribution is transformed to the standard
deviation of O (standard error of Q) using a table provided in his paper. This table was based on the
relationship given in equation 1.

(1) v’ = exp(o’ -1

log space )

reai space

The estimates of standard error of O , obtained using the methods suggested by the authors cited
thus far are compared in the present study, and their usefulness is discussed.

3 DEFINITIONS

In the present study four estimators of the standard error of @ , from a regression relationship bet-
ween O and catchment characteristics are compared. These estimators are given in Table 3-1.

In the introduction it was stated that Nash and Shaw (1965) defined a quantity termed equivalent
length of record (n") with respect to the estimated standard error of © . The expression for n’ is, The

at-site standard error of 0 , i.e. seas, is expressed as given by equation 2 as 0 is considered to have
a normal sampling distribution.

@ 0’ = —A5

Where, se, takes the value of one of the four estimators described in Table 3-1 which is the standard
error of the regression estimate of 0 and oxs is the population standard deviation of the at site
annual maximum data .
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4

EXPERIMENTAL PROCEDURE

The experimental procedure followed is as follows:

1.

41l

12.

13.

350

Calculate at-site statistics (mean, standard deviation and coefficient of skewness) and GEV para-
meters from the AM flood data in m sites in the region. cc;, i=1,2,...,p; j=1,2,...m, are the catchment
characteristics.

Calibrate a relationship of the farm given by equation 8.

(8) InO=aln A+sInS+rlnR+.. +1lnc

where (Q is the dependent variable and A, S and R are catchment characteristics corresponding

to cc as noted in step 1. In estimating the parameters (a, s, r and c¢) of equation 8, the data of (m-
1) catchments were used, site |* being excluded (j* is a selected site of immediate interest). The
number of variables included depends on the significance of the coefficients a,s,...,Inc at 5% level.

Generate m random samples of size N;, j = 1,2,...M, j#j*.
Calculate sample means Qj =12, M.

Calibrate a relation of the form given by equation 9, where the independent variables included are
those found significant in step 2. In calibration of the regression model (M-1) catchment were
used, * being excluded.

(9) 0 = CA°R"S’

Calculate the residual mean square error 592.

Obtain the OLS regional regression model estimate of 0 at the site of interest j*

~

(10) 0. = A°R'S’exp(z)

where z is a N(0,s,°) variate where s,” is the regression model variance. The noise term is added
in every simulation because individual values are simulated.

Calculate se(In Q ) from equations 4 and 6 respectively with o° substituted with Sez.

Calculate Se(,é,- ) as follows:

i) The quantity se. using the relationship se, = Se(Q,) = Q*.Se(ln Q-:) where se(In QL!_,) is
obtained from step 8.

~

i) The quantity denoted sey using the relationship se, =S€(§j*):Qr.S€(an.__) where

~

se(In 0,.) is obtained from step 8.

iii ) The quantity denoted se, which is ¢ 7 from equation 3.
Repeat steps 3 to 9, 1000 times.

. Obtain the sampling distributions of the following using the samples of 1000 values.

i) Q calculated in step 8.

i ) sey calculated in step 10.
iii ) se. calculated in step 10.
iv ) seq calculated in step 10.
Denote the final quantities obtained as follows:

i) The standard deviation of the distribution of j as se;.

i} The mean of se; as se,.

iii ) The mean of se; as sens:

iv) The mean of sey as seys1.

The above simulation experiment was repeated M times with the station of interest j* being selec-
ted asj (j=1,2,...M).

Repeat steps 7 to 13 using the WLS method to calibrate the model.
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5 RESULTS AND DISCUSSION

The experiment outlined in the previous section was carried out with three different data sets. Each
data set contained 30 stations. Data set 1 was from Southeast England (record lengths varied from 20
years to 80 years); Data set 2 from Southeast Ireland (record lengths varied from 12 years to 20
years) and Data set 3 from the State of Arkansas in the USA (record lengths varied from19 years to 58
years). The behaviour of the 4 estimators of standard errors of Q. denoted seq, Se;, Sens: and seyss

(these estimators were described in table 3-1) are discussed in this section.

seq is assumed to estimate the standard error accurately as it is the standard deviation of the sampling
distribution of ¢, obtained from the simulation experiment. The differences between se,, sengs and
seys: relative to se; were examined by plotting the percent seq, se,, sens; and seys, against seq. All
these quantities were standardised by true O to remove the scale effects (Senaratne, 1998). These
plots of the standard errors against se; for all data sets are given in Figure 5-1.

It is evident from these figures that when the standard error is low all the estimators are equally
efficient whereas, when the standard error is high the estimators behave differently. The variation of
this difference with ses, is consistent across the data sets.

Weighted Least Squares (WLS) method is found to be able to circumvent the heteroscedastic nature
of the AM flood data, resulting in better estimates of g (Senaratne and Cunnane, 2002). Hence, in the
following section, behaviour of the different estimators is examined when the regression models of real
data are calibrated using the WLS method.

5.1 Behaviour of the estimators when the WLS method is used

Figure 5-2 shows the variation of standard error when the WLS method is used to estimate the regres-
sion parameters. The same vertical scale is used as in the corresponding OLS plots in Figure 5-1 for
easy comparison between the two methods. It is evident from these figures, that the difference bet-
ween the four estimators are reduced.

It is apparent that the estimates se; and seng; become very close to each other whereas seng; and se,
are overestimating mainly in the case of Irish and US data. This phenomenon can be explained by

examining the expressions used in obtaining the standard error of O (se,, se. and sey) of the esti-

mators ses, Senst and Senss.
The standard error obtained using the residual error of the regression analysis is the standard error of

]né. In the expressions of the standard error of 0, Q is a multiplier as seen in equations 5 and 7. These
estimators were termed as se., and sey. Since these expressions contain é as a multiplier, any under-
estimation or overestimation of ¢ is reflected in the standard error of Q . In the OLS method, the standard
error of iné was underestimated and in most cases Q was overestimated. The net result is that the
underestimation of standard error of § is reduced. In the WLS method @ is efficiently estimated, in which

case the overestimation of ¢ tends to result in an overall overestimation of standard error of O .

Moreover it appears that se, and seys; are behaving in a similar manner. The common characteristic
between se; and seys; is taking account of the location of the station relative to the centroid of the
data space in their respective expressions. Hence, the standard error obtained using se, and seys,
result in higher values than seyg; at stations further from the centroid.

5.2 Comparison of the estimated equivalent number of years from the 4 estimators

The standard error is used in calculating the equivalent number of years (n") using equation 2, to esti-
mate the relative worth of the regression estimate of ¢ . Therefore it is important to examine the values
of n" estimated by the four different estimators. The variation of n' with se; is shown in Figure 5-3, for
Irish data using the OLS method. The corresponding figure for the WLS method is shown in Figure 5-4.

It is important to note that the estimators of n’ have the maximum difference between them when the
standard error is high and this difference is reduced when the standard error is low.
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The average and the range of the differences between n’ses and n’. for all data sets are given in Table
5-1. It is clear that ses is better than NS1 and NS2 when the OLS method is used. This is apparent
across all three data sets. However, such a definite statement cannot be made about any estimator
when the WLS method is used.

Table 5-1:  The average differences between n’ser and n’.. when OLS and WLS methods are used.

Data set 1 Data set 2 Data set 3
average range average range average range
n’ -n'_ .14 | .54-.00 .08 .34-.00 .14 | .05-.00
.22 1.6-.00 .74 2.8-.02 .43 1.8-.03
. -n_. .44 | 1.6-.02 .20 | .61-.02 .44 | .01-.00
' .45 1.7-.02 .59 1.7-.02 .07 .37-.00
n  -n_. .36 | 1.3-.00 .13 | .46-.00 .36 | .09-.00
) .19 .96-.00 .68 2.6-.00 .42 1.8-.03

(note- The figures in italics are those obtained using the WLS method )
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Figure 5-3: Variation of n” with seq using the OLS method - Data set 2.
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Figure 5-4: Variation of n” with se1 when WLS method us used - Data set 2.
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6 CONCLUSIONS

The estimates of standard error produced by the four different estimators differ by little as .1% when
ses is 10% of @ and increases up to 28% when seq is 240% of 0 with the OLS method. Table 6-1
shows the maximum differences observed when both the OLS and WLS methods are used.

Table 6-1:  The differences shown by se., senst and sensz with sey.

OLS Method WLS Method
Sesz 15.0% 14.0%
SEns1 28.0% 8.0%
SEns2 9.0% 15.0%

The difference in years of the relative worth of the regression estimates of O calculated using the four
different estimators are as per Table 6-2.

Table 6-2: The differences shown by n’se2, N'senst and N'sensz With N'seq.

OLS Method WLS Method
Sep 0.54 2.77
Sens1 1.60 1.74
Sensz 1.28 2.65

The four procedures differ by a maximum of 1.60 years in OLS method and 2.77 years in WLS
method, when the standard error of the estimated O is high. Therefore the estimators should be used

with caution when the estimated standard error of Q is high, and are reliable when the estimated
standard error of O is low.

The WLS method leads to better estimation of parameters in the regression relationship than OLS
method and should be used whenever possible.
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RELEVANCE OF THE SEASONALITY OF PRECIPITATION AND FLOODS
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SUMMARY

Directional statistics were used to investigate the seasonality of precipitation and floods of different
magnitudes for 215 catchments (10 to 954 km ) in southwest Germany. Distinct patterns of season-
ality of floods and precipitation were found. In general, the seasonality of precipitation was less pro-
nounced then the seasonality of floods, and in most catchments floods occurred not at the same time
as the extreme rainfall. A change of the seasonality of floods from west to east was found for the in-
vestigated area, which might be due to the change from more oceanic to more continental climate.
However, this is superimposed by the influence of the topography, what is the first order control of the
seasonality of floods. For more extreme floods a more distinct spatial seasonality pattern was obser-
ved and more catchments showed summer seasonality. Summer seasonality is mainly caused by con-
vective storms with limited spatial extent and could be found only for small catchments. Winter sea-
sonality is often the result of advective precipitation events that might be very expanded and fnore fre-
quent in winter times. As a consequence all catchments with an area larger than 450 km® showed
winter seasonality.

It could be shown, that homogenous regions are more distinct with increasing extremity of the flood
events. This reveals the suitability of the seasonality to define homogenous regions for flood frequency
analysis because these regions are defined by the same dominating processes controlling especially
extreme flood events.

Keywords: Seasonality, floods, precipitation, recurrence intervals, regionalization, Southwest Germany

1 INTRODUCTION

In many regions floods do not appear equally distributed all over the year and the probability of floods
is more distinct for different seasons (Magilligan & Graber, 1996; Burn, 1997; Black & Werrity, 1997;
Bloschl et al., 1999; Haupt et al., 1999; Merz et al., 1999; Uhlenbrook et al., 2001). This fact is relevant
for estimating the recurrence interval of floods. The probability that a given flood level is exceeded
might differ substantially for different seasons. Furthermore the seasonal behavior of precipitation and
runoff in a catchment might give information about the major processes generating floods in these
catchments (Bléschl & Sivapalan, 1997). As the seasonality is linked to the meteorologlcal and
hydrological processes generating floods, it provides valuable information for identifying regions that
are homogenous in their flood frequency behaviour (Magilligan & Graber, 1996; Black & Werrity, 1997;
Piock-Ellena et al., 1999; Haupt et al., 1999).

In a previous investigation the significance of meteorological input and physiographic basin properties
for generating extreme floods, defined as floods with a recurrence interval greater than 10 years, were
investigated for 29 mesoscale catchments in southwest Germany (Uhlenbrook et al., 2002). Precipi-
tation was found to be the most significant factor whereas digitally available physiographic charac-
teristics were less significant. A distinct seasonality for the occurrence of extreme floods and a less
strong seasonality of precipitation events were found. In addition, different recurrence intervals for
precipitation events were calculated for different seasons.

The present study focuses on the distribution of seasonality of floods and precipitation in the southwest
of Germany. Therefore, an enlarged data set of 215 catchments was investigated in order to gather more
dense information about the seasonality of floods in this area and to learn which processes are the major
controls of the peculiarity and the timing of flood seasonality. An additional objective is to examine the
relationship between the extremity and the seasonality of observed floods of different magnitude.
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2 THE INVESTIGATION AREA

The state of Baden-Wirttemberg is located in the southwest of Germany, surrounded by France, Switzer-
land, Bavaria and Hessen (Figure 2-1). The relief is dominated by the mountain ranges Black Forest,
Schwébische Alb and Odenwald. South of Baden-Wirttemberg the Alps build a high barrier that is aligned
in direction west to east. Between the mountain ranges lower areas with little relief are situated.
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“Switzerland

Elevation [m asl]
<180 [m 600 -750 ™/ River
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]

Figure 2-1: The state of Baden-Wirttemberg and its main landscape units.

3 DATA AND METHODS
3.1 Data base

Daily runoff data of 215 gauging stations in Baden-Wirttemberg were used to investigate the sea-
sonality of floods. The minimum and maximum record length was 20 and 84 years, respectively. The a
priori assumption of trend free seasonality is confirmed by investigations of Eisele et al. (2001). There-
fore, no standard period was established because that would have decreased the number of test sites.
The catchment areas varied from 10 to 954 km®.

Daily catchment precipitation was calculated from a 7 x 7 km® grid of regionalized precipitation data
(DWD, 1999) for the period 1931-1997 in order to investigate the seasonality of the daily rainfall. It
has to be noted, that only falling precipitation was considered and no snowmelt model was applied.
Measures of catchment altitude and slope were calculated from a digital elevation model with a cell
size of 50 x 50 m®,
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3.2 Seasonality of precipitation and floods

The seasonality of precipitation and floods were investigated applying circular statistics modified after
Magilligan & Graber (1996) (Figure 3-1). The ratio of actual vector length and maximum possible
vector length is a measure for the peculiarity of seasonality. The direction of the resultant vector repre-
sents the mean time of the year when the floods occured. The closer the ratio of actual vector length
and maximum possible vector length to one, the more events occurred in the same season. A ratio of
one would indicate, that all events happened on the same day in the respective years. In the following
'vector length’ will be used for the ratio of actual vector length and maximum possible vector length.
The investigation was done for different extents of extremity. As thresholds the values of the 95% 99%,
99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6% and 99.7% quantils of the distribution of daily records for
discharge and precipitation were determined, respectively. At the 99.7%-threshold eight catchments had
less then five flood events. Thus, this was the highest threshold. A comparison of the 99.7%-thresholds
with estimated recurrence intervals (calculated for several basins of different sizes and with different
available record lengths) showed that this threshold equals a recurrence interval of about two years. The
recurrence interval of the 95%-threshold corresponds roughly to the one year flood. High discharge
values that were connected to other events were excluded from the investigation.

maximum possible resultant vector length

—_—

actual resultant vector length

hydrological
winter period

i
J 2 180°
1. Nov. 1. May
hydrological
summer period
270°
1. Aug.

Figure 3-1: Visualizing the seasonality of flood events and precipitation events by estimation of the
resultant mean vector by adding together the individual vectors for each flood event. The
direction of the arrow of an event represents the date of the flood, the arrow length of the
resultant vector indicate the peculiarity of seasonality.

The peculiarity and timing of the seasonality of floods was also determined using the maximum of the
regime of normalized mean monthly highest discharge values (according to Pardé, 1947). In order to
compare the highest mean monthly values with the seasonality vectors of floods, vectors were calcula-
ted for the highest mean monthly discharge values. The length of each vector was determined by the
normalized mean monthly highest value and the direction by the 15 of the respective month.
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4 RESULTS AND DISCUSSION
4.1 Visualization of the seasonality and statistical investigations

The seasonality vectors of floods show a distinct pattern in direction (date of occurrence) and length
(peculiarity) for the southwest of Germany (Figure 4-1-a). The seasonality of the daily catchment pre-
cipitation (Figure 4-1-b) is generally less strong and more homogeneous than the seasonality of floods.
Similar differences between the patterns of seasonality for precipitation and floods were found by Merz
et al. (1999) for Austria. This seems to be caused by the influence of differing catchment storage cha-
racteristics (i.e. snow storage, interplay of soil and vegetation storage, or artificial reservoirs). The
majority of catchments are characterized by a summer seasonality of precipitation, but most floods
occurred in the winter season. Uhlenbrook et al. (2001) showed, that during summer times, when the
catchments water storage filling is low, even extreme rainfall events could lead to only moderate floods.
In winter season with filled reservoirs and sometimes snow coverage even moderate rainfall events were
able to cause extreme floods. Therefore, regions with summer seasonality of precipitation and winter
seasonality of floods can occur. In regions with winter seasonality of precipitation, flood seasonality falls
into the winter season too, observed for the Black Forest and the Odenwald. These are the only regions,
where winter seasonality of precipitation was found. In both regions the flood occurred mainly in the early
winter, while for the rest of the investigated area most floods occurred in late winter or early spring.
Floods in the hydrological summer period were found only for a few catchments.

In the regions of the Black Forest and the Odenwald is a direct link between the seasonality of
precipitation and the seasonality of floods, while this is not the case for the rest of the area. This is
also corroborated by the results of a regression analysis. No correlation was found between length or
direction of the seasonality vectors of floods and precipitation. This is caused by the heterogeneity of
the over all relation between precipitation seasonality and flood seasonality.
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Figure 4-1: Seasonality of floods (a) and precipitation (b) of events that exceed the 99.6%-threshold
(cf. Figure 3-1).

360



Topic 3
Extreme Value Statistics

Between the seasonality of the normalized mean monthly highest discharge values and the seaso-
nality of floods a linear relationship could be found (Figure 4-2). The seasonality of floods can be ex-
pressed partly by the normalized highest mean monthly discharge values (r = 0.7). Nevertheless, there
are catchments where flood seasonality differs from the seasonality of highest mean monthly dis-
charge (Figure 4-2).
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Figure 4-2: Relationship between the seasonality of floods (99.6%-threshold) and the maximum of
the regime of normalized mean monthly highest discharge values.

The peculiarity of seasonality (expressed by the length of vectors) and the date of occurrence (ex-
pressed by the direction of vectors) of floods were investigated in relation to an increasing extremity
for events exceeding the 95%-threshold (Figure 4-3-a) up to events exceeding the 99.7%-threshold
(Figure 4-3-b). It can be seen, that with increasing extremity of floods more catchments with sea-
sonality vectors longer then 0.7 occurred. To test if the number of events in the data sets for different
thresholds affects the length of vectors, the data sets of all events exceeding the 95%-threshold was
divided randomly in subsets of different sizes. Therefore, a large subset with 100 events was investi-
gated, what is close to the mean event number for the 95%-threshold, down to the smallest subset
with five events, what is less then the mean event number for the 99.7%-threshold. New vector
lengths were calculated for each subset. In deed it was found, that the number of events influences
the mean vector lengths. With decreasing number of events, the mean vector length was increasing.
Consequently, the increasing length of vectors is not only a result of increasing extremity but also a
consequence of decreasing number of events.

In addition Figure 4-3 shows that for more extreme events the temporal variability of seasonality is
higher than for less extreme events. More catchments with summer seasonality of floods were obser-
ved with increasing extremity of the events. When estimating the seasonality of events that exceed the
95%-threshold, it was found that nearly the whole area is dominated by winter seasonality. Using only
the events exceeding the 99.7%-threshold a considerable number of catchments with summer seaso-
nality became obvious.

The relatively wide range of catchment area sizes in the data set allowed to examine the influence of
scale on flood seasonality. There was no catchment with an area greater than 450 km® with summer
seasonality (Figure 4—4-a2. This was also found including less extreme events. For the catchments that
are smaller then 450 km®, floods occurred nearly all over the year. Therefore, no statistical correlation
between catchment area and angle of seasonality vector could be found.

A similar situation was found by plotting the catchment sizes versus the length of seasonality vectors
for events exceeding the 99.7%-threshold (Figure 4-4-b). There is a wide variability of seasonality of
catchments with an area less then 450 km®. With two exceptions all catchments greater than 450 km?®
are characterized by strong seasonality. However, this tendency was not found for the set of events
exceeding the less extreme 95%-threshold. The two catchments that have no distinct seasonality but
are much larger then 450 km® are situated in very southeast of the investigated area. Here a region
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with weak seasonality was found (Figure 4-1-a). The wide variation of vector length among the smaller
catchments hinder an over all significant correlation between catchment size and peculiarity of

seasonality.
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Figure 4-3: (a) Mean vector angle versus mean vector length for events exceeding the 95%-threshold
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length of the seasonality vectors for flood events exceeding the 99.7-threshold.

Only weak correlations were found between the altitude above sea level (r = -0.25) or the mean slope
{r = -0.23) and the mean timing of floods {seasonality vector angle). No correlation was found between
measures of altitude or slope and the seasonality vector length. The differences of altitudes in Baden-
Wirttemberg are not as high, as for instance in Austria or Switzerland where a more pronounced influ-
ence of the altitude on the seasonality was found (Piock-Ellena et al., 2000). No correlation was also
found between geographic position and the length or direction of seasonality vectors.

4.2 Regions with similar seasonality

In a first step different attempts were made to identify homogenous seasonality regions, using several
cluster analyses and different sets of variables. The results were not satisfying, because most clusters
did not form geographic regions. In a next step, an alternative approach was made to extract homo-
geneous regions. As a threshold to separate the data the angle of the seasonality vector to May 1%
was chosen, because this date separates the hydrological winter from the hydrological summer sea-
son. To separate the data with respect to the peculiarity of seasonality two additional thresholds were
used. The first is the vector length value of 0.4, assuming that a shorter vector length indicates no dis-
tinct seasonality. As second threshold value the vector length of 0.7 was used to identify catchments
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with a strong seasonality, as they have longer vector lengths. If that value is exceeded, all flood events
were observed within three months. The chosen thresholds separate the data into the three classes
with “weak or no seasonality”, “moderate seasonality” and “strong seasonality”.

The flood events that exceed the 99.6%-threshold were used for defining homogenous regions for two
reasons. First, it was found that with increasing extremity of flood events the spatial seasonality
pattern becomes more obvious. By using the 95%-threshold only weak and moderate winter sea-
sonality was found for most of the catchments. With every step to more extreme thresholds the re-
gional pattern, as shown in Figure 6-4, became more distinct. Second, the number of events that
defines the seasonality should be as height as possible to be representative. The data set of floods
that exceed the 99.6%-threshold offers a sufficient number of events for aimost all sites (Figure 4-5).
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Figure 4-5: Distribution of the frequency of flood events exceeding the 99.6%-threshold.

In Figure 4-6 the result of the grouping procedure is shown. It can be seen, that there is a correlation
between the topography (Figure 2-1) and seasonality. In general, homogenous seasonality regions in
the investigated area are not as well separated as in the more mountainous countries Austria and
Switzerland (Piock-Ellena et al., 2000), what confirms the effect of the relief on the seasonality. Strong
winter seasonality appears in catchments that are situated at the east and south slopes of the moun-
tain ranges. There are two catchments (in Figure 4-6 marked by an arrow) with strong winter seaso-
nality that on the first sight seem to be located at the northwest slopes of the Schwabische Alb. How-
ever, the two catchments divide the ridge of the Schwabische Alb parallel to its alignment into two
ridges and therefore are situated at the southeast slope of one of the two ridges, respectively.

The catchments situated in the Black Forest and Odenwald are characterized by moderate or strong
winter seasonality; most flood events occurred in the early winter (see Figure 4-1-a). It can be assumed
that the southwest circulation, what occurs while west cyclonic and southern west circulation patterns,
plays a key role of the early winter seasonality in this regions. It often carries moist and warm air masses
into that regions during that time of the year and leads to snow melt accompanying intense rainfall.

The influence of the southwest circulation decreases from west to east and in the lee of mountain
ranges. The catchments located at the Schwébische Alb that are shielded from the southwest circula-
tion by the Black Forest are characterized by late winter seasonality (Figure 4-1-a). The frequent
appearance of floods in March and April here seems to be the result of snowmelt at the end of winter.
The Keuper Upland and the area east of the Odenwald show moderate winter seasonality. The flood
appearance varies from catchment to catchment from February to March. Both, snowmelt at the end
of winter and the influence of the southwest circulation might play a key role here.

The Kraichgau, Neckar Basin as well as Oberschwaben and Alpenvorland are very heterogeneous. A
reason might be that the topography is very smooth in theses regions and therefore, a mix of various
factors are influencing the seasonality. A summer seasonality of precipitation (Figure 4-1-b) and an
influence of snowmelt in late winter might balance each other widely.
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Figure 4-6: Grouping of the catchments due to the seasonality of floods that exceed the 99.6%-
threshold.

Summer seasonality is found only in small catchments (Figure 4-4-a) located in the regions of Ober-
schwaben and Alpenvorland, Neckar Basin, Kraichgau and the steep west slopes of the Black Forest.
It is supposed, that convective rainfall events cause the most extreme floods in these catchments. The
reason why only small catchments show summer seasonality is the limited spatial extent of convective
cells. The location of these catchments is also suitable to confirm the assumption that convective
rainfall events are the main flood producing processes in these catchments, because they are located
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in regions where the topography support the formation of convective cells. The steep west orientated
slopes of the Black Forest can cause considerable differences of air temperature compared with the
surrounding areas when in summer afternoons the sun shines with an optimal angle for convection.
The five catchments with summer seasonality of floods in the Neckar Basin (in the center of Baden-
Wirttemberg) are located at or close to the steep west slope of the Schwébische Alb. The catchments
in Oberschwaben and Alpenvorland are close to the edge of the Alps, where convective rainfall events
occur frequently. From Figure 4-1-b it can be seen, that the Kraichgau, Neckar Basin as well as Ober-
schwaben and Alpenvorland are characterized by a considerably seasonality of rainfall, and the most
extreme daily rainfall events occurred in June. The two catchments with catchments size greater than
450 km® and weak seasonality (Figure 4-4-b) are situated in the Oberschwaben and Alpenvorland
region, where convective rainfall events are likely an important factor of flood generation. However,
such events affect only small areas, thus they would not be able to cause summer seasonality for that
large catchments but are effective enough to hinder winter seasonality.

5 CONCLUDING REMARKS

= The seasonality of floods is more distinct then the seasonality of precipitation and shows a more
heterogeneous spatial pattern, what reveals the influence of differing catchment characteristics on
the seasonality.

* For most catchments differ the time when the most extreme floods occurred considerably from the
time, when most extreme precipitation events were observed. This can be explained by different
fillings of the hydrological reservoirs of the catchments in winter and summer season.

e The topography in interaction with typical atmospheric circulation patterns in southwest Germany is
the most important controls on the seasonality of floods.

e There was no statistical significant effect of the geographic position of the catchments on sea-
sonality. However, a shift in the temporal occurrence of floods from early winter to late winter from
west to east became obvious. This suggests an influence of the more oceanic to the more conti-
nental climate type. But this mﬂuence is superimposed by the stronger influence of the topography.

o Larger catchments (> 450 km ) are all characterized by winter seasonality and stronger seasona-
lities. Here the most important flood generating processes are advective rains and snow melt events,
that are more frequent in the winter season. Convective summer events usually are not able to
cause extreme floods in larger catchments, due to their limited spatial extent. They affect in parti-
cular small catchments, where the only summer seasonality of floods could be observed.

» The increasing clearness of seasonality patterns with increasing extremity of floods reveals the sui-
tability of seasonality in applied hydrological studies, e.g. to define homogenous regions for flood
frequency analysis.

e The strong influence of the west cyclonic and southern west circulation patterns on winter sea-
sonality of floods in the Black Forest and Odenwald is of particular interest in relation to climate
change. It was shown by Caspary & Bardossy (1995), that the frequency of the circulation type west
cyclonic in winter season is increasing since the early seventies in southwest Germany. According to
Caspary & Bardossy (1995) this is a reason to fear an increased flooding risk in the winter season in
these regions.

Future investigations will concentrate to determine the influence of snow on the seasonality of floods.
In current project of the German Weather Survey the differentiation of fallen precipitation and snow-
melt is examined for the whole area of Baden-W(rttemberg on a daily base for the last decades. This
will be the base to gain further insights into the importance of snow melt for flood generation and its
spatial and temporal varying significance.
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