Low-Flow Conditions in the Rhine basin - Developments in the 20th century

River Rhine: Basin characteristics

- $A_{E_0} \sim 197.000 \text{ km}^2$
- ~ 58 Mio. inhabitants
- 9 riparian countries

- river length: ~ 1320 km
- primary flow parameters near the mouth:

$$NNQ \sim 600 \text{ m}^3/\text{s}$$

$$MQ \sim 2.500 \text{ m}^3/\text{s}$$

$$HHQ \sim 12.000 \text{ m}^3/\text{s}$$

"Flow regime of the river Rhine and its tributaries during the 20th century - analysis, changes, trends"

(=,,Das Abflussregime des Rheins und seiner Nebenflüsse im 20. Jh.
- Analysen, Veränderungen, Trends")

Belz, J.U.

Brahmer, G.

Buiteveld, H.

Engel, H.

Grabher, R.

Hodel, H.

Krahe, P.

Lammersen, R.

Larina, M.

Mendel, H.-G.

Meuser, A.

Müller, G.

Plonka, B.

Pfister, L.

van Vuuren, W.

During the 20th century: River Rhine - Running...

...slowly out of water

Contents

- Low-flow extremes: trend-dynamics in the 20th century
- Underlying framework and processes
- The role of glacier-decline
- Special anthropogenic impacts: The "Neckar-example"
- Changes in the times of occurrence of low flow-extremes
- Regional patterns of low flow dynamics

Analysed parameter, analysing method:

NM7Q

"the lowest arithmetic mean of streamflow over 7 consecutive days within a given time interval (year, half-year)"

(DVWK, 1983)

Trend

"Minimum-square" method

Test of trend-significance

Mann-Kendall

- "discoverer's level": 80%

- "validation level": 95%

Trends and tendencies of half-yearly and yearly values of NM7Q at gauges with long observation series in the Rhine basin,

period 1901 – 2000

Standardised diagram of characteristic types of flow regimes in the Rhine basin, reference period 1951-2000

Nival (= snow-dominated) regime of mountainous areas, very wide range of amplitude, single-peak, maximum in summer due to snowmelt, frost-inducted minimum in winter

Pluvial (= rain dominated) oceanic regime, wide range of amplitude, single-peak, maximum in the mild rainy winter months, minimum in summer resulting from intensive evapotranspiration

Balanced pluvial mixed regime ("complex regime 2nd order") of the rain-snow type, two-peaks, with the main maximum in late winter and a minimum in autumn

Standardised ten-year means of air temperature (LT) in the Rhine basin in the hydrological winter- and summer-seasons, period 1901-2000

Trends and tendencies of half-yearly and yearly values of areal precipitation (SumhN) in sub-catchments of the Rhine basin in the series 1902 - 2000

Modified climatic effects on the hydrologic cycle in the Rhine basin during the 20th century

- increase of cumulative winter precipitation
- ► changes in the form of precipitation ("more rainfall, less snow") lead to a higher rate of direct runoff and a smaller portion of snow-storage
- > some results indicate basin-wide increase of real evapotranspiration
 - ▶ in the more southern part of the catchment therefore pluvial elements have been gaining in importance, thus weakening the nival main component of the flow regime of the River Rhine, all-in-all causing seasonal redistributing of runoff
 - **▶** in the more northern part of the catchment primarily the winterly runoff-component has been strengthend

Large reservoirs in the Rhine basin

Large reservoirs in the Rhine basin

Reservoirs in the Alpine region (mainly run for energy-production purposes) have seasonal redistributing effects:

- **collecting water during surface-water affluence in summer**
- releasing water during frost-induced low-flow-season in winter

(upstream of Basel: ~1,9 Mio. m^3 p.a. \rightarrow ~60 m^3 /s per season)

Reservoirs in regions without this strong frost-impact in winter have, due to their different functions (water-supply, recreation, energy-production etc.), more heterogenous storage-regulations and do therefore not show such identical redistribution-effects.

Intensified glacier-melting (IGM) in the Rhine basin Map of sub-catchment ILANZ / Vorderrhein

A_{Eo} 776 km² Period 1850- 2000

Glacier-covered area

Inventories for the years 1850 (pink), 1973 (light green) and 2000 (light blue)

Source:

FRAUENFELDER-KÄÄB & MAISCH in: BELZ et al. (2007)

Intensified glacier-melting (IGM) in the Rhine basin Example: sub-catchment ILANZ / Vorderrhein

A_{E0} 776 km² Period 1850- 2000

↓ ~0.7 %

=percentage of MQ related to IGM in the Ilanz sub-catchment (⇒0.24 m³/s)

(in warm summers up to ~1 %)

momentary maximum during intensive radiation-days in high summer: $\sim 12 \text{ m}^3/\text{s}$

Intensified glacier-melting (IGM) in the Rhine basin Extrapolation to the sub-catchment BASEL

 A_{E_0} 35925 km²

Simplistic extrapolation, basing on surface expansion-rates only (not considering glacier-volume, individual melting characteristics of glaciers, retention-effects of the stream-network and lakes, evaporation etc.)

Glacier-covered area upstream of Basel (total): 427 km²

Glacier-covered area upstream of Ilanz (total): 20.9 km² (i.e. 1/20)

Melting-contribution at Ilanz (year), 0.25 m³/s if assigned to the 4 high-summer months: 0.75 m³/s

 $0.75 \times 20 = 15 \text{ m}^3/\text{s}$

Comparison: mMQ (August): 1270 m³/s

 \Downarrow

percentage of mMQ(August) related to IGM in the Basel sub-catchment: 1.2 %

MOREOVER - A MATTER OF FLOW-REGIME:

,IGM' IS NOT CRUCIAL FOR LOW-FLOW DYNAMICS IN THE RHINE BASIN, AS SUMMER IS THE TIME OF ABUNDANT WATER, NOT FOR LOW-FLOW IN THE ALPINE-RHINE AND HIGH-RHINE SUBCATCHMENTS

Lauffen / River Neckar: Interbasin runoff-transfer Trend and reversed trend in the summer half-year NM7Q series against the background of DWT (drinking-water transfer), period 1951-2000

Rhine basin:

Seasonality index according to BURN / most probable dates of occurrence of NM7Q

	Period 1901-1925		Period 1926-1950		Period 1951-1975		Period 1976-2000		Shift [in weeks]
	Occur- rence [KW]	Р	Occur- rence [KW]	Р	Occur- rence [KW]	Р	Occur- rence [KW]	Р	-
Diepoldsau			6	0,89	4	0,89	2	0,85	4
Rekingen	6	0,77	4	0,86	3	0,65	5	0,78	-1
Untersiggenthal	51	0,73	52	0,76	51	0,73	50	0,69	1
Basel	2	0,73	2	0,80	52	0,65	1	0,71	1
Maxau	1	0,7	1	0,77	48	0,69	47	0,50	6
Rockenau					42	0,65	41	0,84	1
Worms	1	0,68	52	0,73	48	0,65	44	0,66	9
Würzburg	31	0,67	36	0,57	35	0,69	35	0,79	-4
Kaub	51	0,62	51	0,71	46	0,67	43	0,69	8
Cochem	33	0,83	35	0,83	36	0,79	35	0,85	-2
Andernach	47	0,66	51	0,51	45	0,58	42	0,75	5
Köln	46	0,65	50	0,49	45	0,58	42	0,75	4
Rees	45	0,55	50	0,49	45	0,53	42	0,75	3
Lobith	46	0,58	51	0,36	45	0,55	42	0,71	4

(KW = calendar weeks)

Main results of these impacts on low-flow conditions in the Rhine basin during the 20th century

Mitigation of low-flow extremes is most intensive there, where the winter season is the actual low-flow season, this means in the southern Rhine basin that is characterised by a nival regime.

Southern Rhine Basin:

Changes in flow-regime of the River Rhine at Basel during the 20th century, differenciated in 4 sub-periods

Main results of these impacts to low-flow conditions in the Rhine basin during the 20th century

- Mitigation of low-flow extremes is most intensive there, where the winter season is the actual low-flow season, this means in the southern Rhine basin that is characterized by a nival regime.
- Conversely, in the pluvial upland- and lowland-regions, where the lowflow period occurs usually in autumn (regionally in late summer), this tendency to mitigation of extremes is lacking. Nevertheless substantial intensification of low-flow extremes (significant trends) usually cannot be ascerted. Exception: additional anthropogenic impacts.

Northern Rhine basin:

Changes in flow-regime of the River Rhine at Lobith (NL) during the 20th century, differenciated in 4 sub-periods

Rhine basin: Regional trend characteristics NM7Q (yearly series)

Rhine basin: Regional trend characteristics NM7Q (yearly series)

Rhine basin: Regional trend characteristics NM7Q (yearly series)

Rhine basin: Regional trend characteristics NM7Q (yearly series)

Rhine basin: Regional trend characteristics NM7Q (yearly series)

Rhine basin: Regional trend characteristics NM7Q (yearly series)

Rhine basin: Regional trend characteristics NM7Q (yearly series)

Thank you for your kind attention!

