Discharge forecast for the Alpine Rhine river –
the influence of the hydropower plants

Hans-Peter Wächter, dipl.Natw.ETH
Projektleiter Hochwasserschutz, Rheinunternehmen St.Gallen
Projektleiter Stv, Abflussprognosemodell Alpenrhein

CHR Workshop, Bregenz, 26./27. März 2014
Discharge forecast model for the Alpine Rhine river

Agenda

1. Why do we need a discharge forecast model for the Alpine Rhine river?
2. Caracteristic of the catechment basin
3. The structure of the discharge model
4. modeling the discharge of the basins of the hyrologic powerplants
5. Summary
Why a discharge forecast model?

The Alpine Rhine river is not navigable!

- The Alpine Rhine river is the biggest mountain river in Europe.
- Flood protection: The Alpine Rhine river has along a distance of 65 km on both sides flood embankments for a HQ100 (3100 m³/s).
- High vulnerability: 500,000 inhabitants, 250,000 work places.
- Flood warning: in Switzerland a must since 2011.
- The Alpine Rhine river is the biggest inflow of the lake of Constance (Basin for drinking-water preparation for more than 6 Mio persons).
The Alpine Rhine river – a big mountain river
We prevent together!
Caracteristic of the catchment basin (I)

Countries:
- CH (GR, SG)
- AUT (Vorarlberg)
- FL

Area of the basin: 6119 km²

Highest point: 3400 müM
Lowest point: 400 müM
Mean altitude: 1800 müM

glaciered: 1.4%

Low water discharge: 40 m³/s
Mean discharge: 250 m³/s
100-year flood (HQ100): 3100 m³/s

Flow velocity: 1-5 m/s
Caracteristic of the catchment basin (II)

Legend:
- HY 1968/1999
- HY 1999/2000
- HY 2000/2001
- HY 2001/2002
- HY 2002/2003
- HY 2003/2004
- HY 2004/2005
- HY 2005/2006
- HY 2006/2007
- HY 2007/2008
- HY 2008/2009
- HY 2009/2010
- HY 2010/2011
- HY 2011/2012
- HY 2012/2013

Mean Yearly Precipitation:

- Average: 329 m³/s

Graph showing precipitation and discharge data over time.
Informations to the structure of the discharge model

Physikalisch begründete Modelle

Used hydrological model:
WaSiM-ETH
Grid (500 x 500m)
Daily forecast by CH/FOEN (BAFU)
Reservoirs of hydroelectric powerplants

22 reservoirs, 14 with big dams:
→ 14 reservoirs with a storage volume with evidence in case of heavy precipitation and floods

Volume total: 727 Mio m³
Structure of hydroelectric powerplants / pumped storage

Vorarlberger Illwerke
Discharge model: online data input

Measured data: (CH: Meteo CH / BAFU / SLF / BFE; AUT: ZAMG, Vlbg)

- air temperature
- amount of precipitation
- air moisture
- air pressure
- wind velocity
- snow cover
- discharge
 - water level of the reservoirs

Hydro powerplants

- drain and catchment of streams
 - working condition (production / storage)

forecasting

- forecast of precipitation (COSMO-2, COSMO-7, COSMO-LEPS)
- forecast of temperature (rain / snowfall / snowmelt)
Observed discharge: Influence of Hydropower
Discharge model WaSiM: Influence of Hydropower (I)

Discharge August 2005: Ill-Gisingen
Discharge model WaSiM: Influence of Hydropower (II)

Discharge August 2005: Rhein-Diepoldsau
Hydrological model WaSiM: Influence of the powerplants

- The morphology of the drainage system of the powerplants can be represented in WaSiM.

- **Energy production yesterday:** Discharge modeling was possible, because of rather clear daily patterns (difference workdays/weekend)

- **Energy production today:** Discharge modelling is nearly impossible. Very flexible operation of the alpine powerplants dependent of the energy market.

- **Influence of the energy production to the discharge:** about +/- 150 m3/s \rightarrow Sunk/Schwall: very bad for the oecologic system (fish population)

- **Influence of the energy production by flood discharge:** A reduction of the discharge up to 400 m3/s is possible, when powerplants are pumping and the upper reservoirs are low.

- **Filling / Water level of the reservoirs:** we don’t have online data for the hydrologic model. Updating only once a week.
Today it is not possible to represent the actual energy production of alpine hydropower plants in a hydrologic discharge model.

The hydrologic model WaSiM in the basin of the Alpine Rhine river is not usable for low water levels.

The data exchange between the powerplants and the forecast institutions must be improved.

Extrem flood events are possible at any time, even under conditions of climatic change.

We can imagine, that the alpine reservoirs of the powerplants will have a higher filling in summertime than today.
Thank you for your attention!