

CHR Spring Seminar - 25/26th March 2015

Sand loss during bed load measurements

experiments in a tilting flume

Dipl.-Ing. Karin Banhold Dr. Roy M. Frings Prof. Dr.-Ing. Holger Schüttrumpf

Institute of Hydraulic Engineering and Water Resources Management RWTH Aachen University

Sand loss during bed load measurements

Objective: Complete bed load data

Bed load sampler bags consist of mesh net

 $\rightarrow\,$ sediment smaller than meshes can pass

 \rightarrow UNDERESTIMATION

Dipl.-Ing. Karin Banhold IWW • RTWH Aachen University

Sand loss during bed load measurements

Introduction

- Scientific objective:
 - Quantify the sand loss during bed load measurements
 - Identify influencing parameters

(Mesh size? Filling degree? Coarse gravel content? Sand content?)

Bed load measurement: 1) Sampler remains on river bed

2) Sampler is pulled back to ship

duration on bed: 300 s

Bed Tests – Method

Dipl.-Ing. Karin Banhold IWW • RTWH Aachen University

Sand loss during bed load measurements

CHR Spring Seminar 25/26th March 2015

- Tilting flume in the laboratory of the IWW
- Slope: 0.05 %

5

Dipl.-Ing. Karin Banhold IWW • RTWH Aachen University

Sand loss during bed load measurements

Calculation of loss:

difference between added sediment and content after measuring

Mesh size 0.5 mm: average loss = 23 %

Calculation of loss:

difference between added sediment and content after measuring

Mesh size 1.4 mm: average loss = 50 %

Lift-up tests simulate the pulling back to ship

Lift-up – Method

Sampler is in the water body, duration: 30 s

- Tilting flume in the laboratory of the IWW
- Slope: 0.05 %

Lift-up – Method

10

Dipl.-Ing. Karin Banhold IWW • RTWH Aachen University

Sand loss during bed load measurements

 \sim

Lift-up – Method

•	Parameter	Variations			Capacity of sampler: 20 kg
	Added mass	2.5 kg	7.5 kg	12.5 kg	I
	Sand content	20 %	40 %	60 %	80 %
	Coarse gravel content (16 – 32 mm)	10 %	40 %		
	Mesh size	0.5 mm 1.4 mm			
		66 experiments			

Lift-up – Results

- Calculation of loss: difference between added sediment and content after measuring
- Mesh size 0.5 mm: average loss = 3 %

Calculation of loss:

Lift-up – Results

difference between added sediment and content after measuring

Mesh size 1.4 mm: average loss = 16 %

13

Dipl.-Ing. Karin Banhold IWW • RTWH Aachen University

Sand loss during bed load measurements

Sand loss during complete measurements:

$$SL = 1 - (1 - SL_{bed}) \cdot (1 - SL_{lift-up})$$

SL : Sand loss during entire measurement [-]

*SL*_{bed} : Sand loss during measurement on river bed [-]

SL_{lift-up} : Sand loss during lift-up [-]

Application: correction of bed-load data

German River Rhine: 1.5 - 3.1 times more sand transported as bed load

Conclusion

- Sand loss increases with increasing <u>mesh size</u>
 - Sand passes big mesh easier
- Sand loss decreases with increasing <u>filling degree</u>
 Sand hides in spaces of other particles
- Sand loss decreases with increasing <u>sand content</u>
 Mesh of sampler bag clogs
- Sand loss is higher during measurement on <u>river bed</u> than during lift-up process
 - Sand hides in spaces of other particles

Dipl.-Ing. Karin Banhold IWW • RTWH Aachen University

Thank you

- Federal Institute of Hydrology, Referat M3:
 B. Astor, N. Gehres, G. Hillebrand, S. Vollmer
- J. Judt (Bachelor Thesis)
- Student research assistants:
 - L. Staggenborg and others

... for your attention

Dipl.-Ing. Karin Banhold

17

Sand loss during bed load measurements

CHR Spring Seminar 25/26th March 2015

IWW • RTWH Aachen University

0.25 mm-net

18

Dipl.-Ing. Karin Banhold IWW • RTWH Aachen University

Sand loss during bed load measurements

Additional tests with modified DNS: mesh size 1.4 mm

19

Dipl.-Ing. Karin Banhold IWW • RTWH Aachen University

Sand loss during bed load measurements

• How much sand could possibly pass the mesh net?

20

Sand loss during bed load measurements

