

Scenarios for drinking water and waste water in the Ruhr area

RUFIS
Ruhr-Forschungsinstitut für Innovations- und Strukturpolitik e.V.

Outline

- RUFIS, dynaklim
- Water demand 2010
- Influencing factors and consumption areas
- Climate influence
- Building scenarios
- Future Consumption of drinking water
- Scenario results
- Daily consumption of drinking water in the future
- Conclusion
- Further use of scenario analysis

RUFIS

Founded 1979 by Prof. Klemmer Economic research and consulting service for administrations

Competences

- Fields of research: regional economics, structural development, environmental policies, climate change adaptation issues, alternative transportation systems
- Focus issues: co-operation between public and private actors (individuals and companies) and the respective incentives for obstacles this co-operation
- quantitative and qualitative aspects

References (sel.)

- dynaklim Climate change: dynamic adaptation of the Ruhr area
 - To much water? Climate change and emerging high-water-risks
 - Water scenarios for the Ruhr area
 - KlimaFLEX Decision support system for administrations
 - ADAPTUS Climate check for enterprises
- AKWA: Contracting in the fields of water management
- Quality improvements for the Wupper

dynaklim - scenario analysis

- Research project supportet by the BMBF
- Support 2009-2014
- Subject: Climate change adaptation in the Ruhr area
- Part 6: Funding and organization of water-related services
- Modelling the basic conditions for water management:
 - Change of expected flood damages
 - Water scenarios for the Ruhr area

Total water demand 2010

- Water consumption (total)
- Litres per inhabitant per day
- Public water supply

Water demand by households 2010

- Domestic use
- Litres per inhabitant per day
- Public water supply

Consumption areas

Influencing factors and consumption areas

Models of water consumption

e,g, hospitals

E=population
TW=drinking water

Climate influence

- Data: daily water amount, temperature and precipitation, 2002-2010
- Breakdown
 - trend
 - daily variation
- Regression
 - weekends and holidays
 - seasons
 - temperature
 - daily precipitation
 - yearly precipitation
 - number of dry days
 - → daily variance
- Results
 - trend (purple)
 - explained variance (green)
 - unexplained variance (residual, orange)

Improvement of the explanatory power

- daily variance without climate factors:
 - skewed distribution
- Accounting for climate/weather influences
 - symmetrical distribution
 - explanation of positive variances
- Reduction of nonexplained Variance (bandwidth green vs. orange)

Building scenarios

Dynamic changes of influencing factors:

Future Consumption of drinking water

- Yearly consumption
- Trend-Szenario
- Without climate change
- Public water supply

Scenario results

Daily amount of drinking water

Conclusion

Drinking water:

- Total water amount sinks significantly
- Capacities to fulfil peak requirements can only be reduced to a minor degree
- In all scenarios

Waste water:

- •General reduction of the total amount
- In all scenarios

Rain water:

Dependent on implemented measures

Future cooling performance for power plants

- Heat input into the rhine by cooling of power plants
- Further heat input, by e.g. industry, shipping
- Heat generation within surface waters
- Adverse effects for downstream riparians
- Impact of cooling measures for power plants
- → Future influences of human use
- → Future influences of climate change
- → Regulative requirements (e.g. Europ. Water Framework Dir.)

SCENARIOS → CRISIS SITUATIONS → EMERGENCY PLANS

source: www.wikipedia.de

THANK YOU FOR YOUR ATTENTION

Dr. Michael Kersting

T: +49 234 32 25335

F: +49 234 707716

M: kersting@rufis.de

RUFIS

Ruhr-Forschungsinstitut für Innovations- und Strukturpolitik e.V.

Universitätsstr. 150 D-44801 Bochum